期刊文献+

Complex micelles with the bioactive function of reversible oxygen transfer

Complex micelles with the bioactive function of reversible oxygen transfer
原文传递
导出
摘要 复杂 micelle 作为血红素,有可逆的氧转移的 biaoactive 函数的功能的模型 poly 通过 diblock 共聚物的层次汇编被构造了(乙烯乙二醇)-blockpoly(4-vinylpyridine-co-N-heptyl-4-vinylpyridine)( PEG-b-P ( 4VP-co-4VPHep )), tetrakis ( 4-sulfonatophenyl ) porphinato 铁( II )( Fe ( II ) TPPS )和 -cyclodextrin (-CD)。含氧 Fe (II ) TPPS 更暗淡因为 Fe (II ) TPPS 通过主人客人被包括进 CD 的洞,成功地被禁止相互作用。与 pyridine 组一起协调的 Fe (II ) TPPS 作为活跃地点工作 reversibly 绑 dioxygen。在 adition,主人客人包括(-CD/Fe(II)TPPS) 在复杂 micelle 的恐水病的核心被包含并且紧由 P4VP 链修理了。在水的答案拉长组成稳定复杂 micelle 的结构象一样的壳的吸水的木钉块赋予复杂 micelle 以足够的血发行量时间。Dioxygen 能被绑在位于限制空间和 dioxygen 的有约束力版本的过程的优秀可逆性的 Fe (II ) TPPS 能被完成。第四级的胺 N-heptyl-4-vinylpyridine 能强制丰富的 S < 潜水艇 class= “ a-plus-plus ” > 2 </sub > O < 潜水艇 class= “ a-plus-plus ” > 4 </sub>< 啜 class= “ a-plus-plus ” > 进复杂 micelle 的核心的 2 个 </sup> 离子处理便于自我减小。Dioxygen 使内收(Fe (II ) TPPS (O < 潜水艇 class= “ a-plus-plus ” > 2 </sub>)) 被由 cyclodextrin 和提高能力抵抗亲核的分子的复杂 micelle 的核心的洞构造的双恐水病的障碍有效地保护。因此,讲道理地设计的 amphiphilic 结构能作为有希望的人工的 O 工作 < 潜水艇 class= “ a-plus-plus ” > 2 </sub> 搬运人。潜在地,复杂 micelle 能被期望改进与组织缺氧连接的疾病的治疗。 A complex micelle as a hemoglobin functional model with the biaoactive function of reversible oxygen transfer has been constructed through the hierarchical assembly of the diblock copolymer poly(ethylene glycol)-block- poly(4-vinylpyridine-co-N-heptyl-4-vinylpyridine) (PEG-b-P(4VP-co-4VPHep)), tetrakis(4-sulfonatophenyl)porphinato iron(II) (Fe(II)TPPS) and β-cyclodextrin (β-CD). The μ-oxo dimer of Fe(II)TPPS was successfully inhibited because the Fe(II)TPPS was included into the cavities of β-CDs through host-guest interaction. Fe(II)TPPS coordinated with pyridine groups functions as the active site to reversibly bind dioxygen. In adition, the host-guest inclusion (β-CD/Fe(II)TPPS) was encapsulated in the hydrophobic core of the complex micelle and tightly fixed by P4VP chains. The hydrophilic PEG blocks stretched in aqueous solution to constitute the shells which stabilize the structure of the complex micelle as well as endow the complex micelle with sufficient blood circulation time. Dioxygen can be bound to the Fe(II)TPPS located in the confined space and excellent reversibility of the binding-release process of dioxygen can be achieved. The quaternary amine N-heptyl-4-vinylpyridine can coerce abundant S2O4^2- ions into the core of the complex micelle to facilitate the self-reduction process. Dioxygen adducts (Fe(II)TPPS(O2)) were effectively protected by the double hydrophobic barriers constructed by the cavity of the cyclodextrin and the core of the complex micelle which enhances the ability to resist nucleophilic molecules. Therefore, the rationally designed amphiphilic structure can work as a promising artificial O2 carrier. Potentially, the complex micelle can be expected to improve the treatment of diseases linked with hypoxia.
出处 《Nano Research》 SCIE EI CAS CSCD 2015年第2期491-501,共11页 纳米研究(英文版)
关键词 胶束结构 氧转移 复合物 可逆性 生物活性 4-乙烯基吡啶 主客体相互作用 二嵌段共聚物 ionic block copolymer,bioactive self-assembly,metalloporphyrin,reversibledioxygen-binding,proton sponge effect
  • 相关文献

参考文献36

  • 1Ikkala, O.; Brinke, G. T. Functional materials based on self- assembly of polymeric supramolecules. Science 2002, 295, 2407-2409.
  • 2Zhang, S, G, Fabricationof novel biomaterials through mole- cular self-assembly. Nat. Biotechnol. 2003, 21, 1171-1178.
  • 3Dickerson, R. E.; Geis, I. Hemoglobin: Structure, Function, Evolution, and Pathology; Benjamin/Cummings: Menlo Park, CA, 1983.
  • 4Zhang, K.; Zhu, L. L.; Fan, M. Oxygen, a key factor regulating cell behavior during neurogenesis and cerebral diseases. Front Mol, Neurosci. 2011, 4, 1-11.
  • 5Schmedtje Jr, J. F.; Ji, Y.-S. Hypoxia and molecular cardiovascular medicine. Trends. Cardiovasc. Med. 1998, 8, 24-33.
  • 6Wilson,W. R.; Hay, M. P. Targeting hypoxia in cancer therapy. Nat. Rev. Cancer 2011, 11,393-410.
  • 7Harris, A. L. Hypoxiaa key regulatory factor in tumour growth. Nat. Rev. Cancer. 2002, 2, 38-47.
  • 8Facciabene, A.; Peng, X. H.; Hagemann, I. S.; Balint, K.; Barchetti, A.; Wang, L.-P.; Gimmoty, P. A.; Glilks, B.; Lal, P.; Zhang, L.; et al. Tumour hypoxia promotes tolerance and angiogenesis via CCL28 and Treg cells. Nature 2011, 475, 226-230.
  • 9Brown, J. M.; Wilson, W. R. Exploiting tumour hypoxia in cancer treatment. Nat. Rev. Cancer. 2004, 4, 437-447.
  • 10Wang, L.-Y.; Shi, X.-Y.; Yang, C.-S.; Huang, D.-M. Versatile RBC-derived vesicles as nanoparticle vector of photosensitizers for photodynamic therapy. Nanoscale 2013, 5, 416-421.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部