期刊文献+

Nanoscale noble metals with a hollow interior formed through inside-out diffusion of silver in solid-state core- shell nanoparticles 被引量:2

Nanoscale noble metals with a hollow interior formed through inside-out diffusion of silver in solid-state core- shell nanoparticles
原文传递
导出
摘要 Noble metal nanoparticles with hollow interiors and customizable shell com- positions have immense potential for a wide variety of applications. Herein, we present a facile, general, and cost-effective strategy for the synthesis of noble metal nanoparticles with hollow structures, which is based on the inside-out diffusion of Ag in solid-state core-shell nanoparticles. This approach starts with the preparation of core-shell nanoparticles with Ag residing in the core region, which are then loaded on a solid substrate and aged in air to allow the inside-out diffusion of Ag from the core region, leading to the formation of monometallic or alloy noble metal nanoparticles with a hollow interior. The synthesis was carried out at room temperature and could be achieved on different solid substrates. In particular, the inside-out diffusion of Ag calls for specific concern with respect to the evaluation of the catalytic performance of the Ag-based core--shell nanoparticles since it may potentially interfere with the physical and chemical properties of the core-shell particles. 有空内部和可定制的壳作文的高贵金属 nanoparticles 为许多应用有巨大的潜力。此处,我们在场为有空结构的高贵金属 nanoparticles 的合成的灵巧、一般、划算的策略,它基于在内外面 Ag 在的散开固态核心壳 nanoparticles。这条途径与居住在核心区域的 Ag 以核心壳 nanoparticles 的准备开始,它然后在稳固的底层上被装载并且在空中变老允许在内外面从核心区域的 Ag 的散开,导致形成一金属或合金有一个空内部的高贵金属 nanoparticles 。合成在房间温度被执行并且能在不同稳固的底层上被完成。特别地,自从它,在内外面,为关于基于 Ag 的核心壳 nanoparticles 的催化表演的评估的特定的担心的 Ag 电话的散开可以潜在地防碍核心壳粒子的物理、化学的性质。
出处 《Nano Research》 SCIE EI CAS CSCD 2015年第2期512-522,共11页 纳米研究(英文版)
关键词 noble metal nanoparticle inside-out diffusion SOLID-STATE CORE-SHELL HOLLOW 金属纳米颗粒 中空结构 外扩散 贵金属 纳米级 固态 金属纳米粒子
  • 相关文献

参考文献2

二级参考文献60

  • 1Lin. J. J.; Lin, W. C.; Dong, R. X.; Hsu, S. H. The cellular responses and antibacterial activities of silver nanoparticles stabilized by different polymers. Nanotechnology 2012, 23, 065102.
  • 2Nederberg, F.; Zhang. Y.; Tan, J. P. K.; Xu, K. J.; Wang, H. Y.; Yang. c., Gao, S. J.; Guo, X. D.; Fukushima, K.; u, L. J; Hedrick, J. L.; Yang, Y. Y. Biodegradable nanostructures with selective lysis of microbial membranes. Nat. Chem. 2011, 3, 409-414.
  • 3Rosemary, M. J.; MacLaren, I.; Pradeep, T. Investigations of the antibacterial properties of ciprotloxacin@Si02? Langmuir 2006,22, 10125-10129.
  • 4Rosi, N. L.; Giljohann, D. A.; Thaxton, C. S.; Lytton-Jean, A. K. R.; Han, M. S.; Mirkin, C. A. Oligonuc1eotidemodified gold nanopartic1es for intracellular gene regulation. Science 2006, 312, 1027-1030.
  • 5Bowman, M. C.; Ballard, T. E.; Ackerson, C. J.; Feldheim, D. L.; Margolis, D. M.; Melander, C. Inhibition of HIV fusion with multivalent gold nanoparticles.J.Am. Chem. Soc. 2008, 130,6896-6897.
  • 6Gu, H. W.; Ho, P. L.; Tong, E.; Wang, L.; Xu, B. Presenting vancomycin on nanopartic1es to enhance antimicrobial activities. NanoLett. 2003, 3,1261-1263.
  • 7Zhao, Y. Y.; Tian, Y.; Cui, Y.; Liu, W. W.; Ma, W. S.; Jiang, X. Y. Small molecule-capped gold nanopartic1es as potent antibacterial agents that target gram-negative bacteria.J.Am. Chem. Soc. 2010,132,12349-12356.
  • 8Dal Lago, V.; de Oliveira, L. F.: Goncalves, K. D.; Kobarg, J.; Cardoso, M. B. Size-selective silver nanopartic1es: Future of biomedical devices with enhanced bactericidal properties.J.Mater. Chem. 2011, 21,12267-12273.
  • 9Abeylath, S. c.; Turos, E. Drug delivery approaches to overcome bacterial resistance to -Iactam antibiotics. Expert Opin. Drug Deliv. 2008, 5, 931-949.
  • 10Weir, E.; Lawlor, A.; Whelan, A: Regan, F. The use of nanoparticles in anti-microbial materials and their characterization. Analyst 2008, 133,835-845.

共引文献16

同被引文献3

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部