期刊文献+

半离散5阶非线性KdV方程的全局吸引子 被引量:2

Global Attractor for a Semi-Discrete Five-Order Nonlinear KdV Equation
下载PDF
导出
摘要 研究在R上具有周期边界条件的半离散5阶非线性KdV型方程解的长时间行为.首先利用Crank-Nicolson格式对其进行离散,然后证明了该方程在H5上紧的全局吸引子的存在. We study the long-time behaviour of a semi discrete KdV equation in R1 with a periodical bound- ary. First, we use the Crank-Nicolson scheme to discrete this equation to prove that such a semi-discrete e- quation possesses a global attractor in H5^. Then we show that this global attractor is actually a compact set of H5^.
出处 《西南大学学报(自然科学版)》 CAS CSCD 北大核心 2015年第3期82-86,共5页 Journal of Southwest University(Natural Science Edition)
基金 国家自然科学基金项目(61273020 11071266) 西南大学博士后基金(102060-207153)
关键词 5阶非线性KdV方程 全局吸引子 GRONWALL不等式 Crank—Nicolson格式 five-order nonlinear KdV equation global attractor Gronwall inequality Crank-Nicolsonscheme
  • 相关文献

参考文献9

  • 1夏红强.具阻尼的KdV-KSV方程的整体吸引子[J].应用数学,1999,12(1):31-36. 被引量:7
  • 2党金宝,王磊,林国广.弱阻尼广义KdV方程的整体吸引子[J].数学研究,2010,43(1):39-49. 被引量:2
  • 3杜先云,陈炜.具有可加噪声的耗散KdV型方程的随机吸引子[J].四川师范大学学报(自然科学版),2012,35(5):651-655. 被引量:5
  • 4AKROUNE N. Regularity of the Attractor for a Weakly Damped Nonlinear Schrodinger Equation on N [J]. Applied Mathematics Letters, 1999, 12(1): 45-48.
  • 5ZHU C S, MU C L, PU Z L. Attractor for the Nonlinear Schrodinger Equation with a Non-Local Nonlinear Term [J]. Journal of Dynamical and Control Systems, 2010, 16(4): 585-603.
  • 6GOUBET O. Global Attractor for Weakly Damped Nonlinear Schrodinger Equations in L2 (N) [J]. Nonlinear Analysis Theory, 2009, 71(2): 317-320.
  • 7谢周艳,朱朝生.无界区域R^1上耗散mBBM方程的全局吸引子[J].西南师范大学学报(自然科学版),2013,38(5):15-19. 被引量:2
  • 8GHIDAGLIA J M, TEMAM R. Attractors for Damped Nonlinear Hyperbolic Equations [J]. Journal de Mathematiques Pures et appliqu6es, 1987, 66(3) : 273-319.
  • 9GOUBET O, ZAHROUNI E. On a Time Discretiaation of a Weakly Damped Forced Nonlinear SchrOdinger Equation [J]. Communication on Pure Applied Analysis, 2008, 7(6) : 1429-1442.

二级参考文献39

共引文献12

同被引文献20

  • 1CHESKIDOV A,HOLM D D,OLSON E,et al.On a Leray-a Model of Turbulence[J].Proceedings of Royal Society (Series A),2005,461:629-649.
  • 2FOIAS C,HOLM D D,TITI E S.The Navier-Stokes-a Model of Fluid Turbulence[J].Physica D,2001,152:505-519.
  • 3STOLZ S,ADAMS N A,KLEISER L.An Approximate Deconvolution Model for Large-Eddy Simulation with Applica- tion to Incompressible Wall-Bounded Flows[J].Physics of Fluids,2001,13(4):997-1015.
  • 4STOLZ S,ADAMS N A,KLEISER L.The Approximate Deconvolution Model for Large-Eddy Simulations of Compres- sible Flows and Its Applications to Shock-Turbulent-Boundary-Layer Interaction[J].Phys of Fluids,2001,13(10):2985-3001.
  • 5STOLZ S,ADAMS N A.An Approximate Deconvolution Procedure for Large Eddy-Simulation[J].Phys of Fluids,1999,11(7):1699-1701.
  • 6MARIA L M,HANA M,SARKA N.Global Existence and Uniqueness Result for the Diffusive Peterlin Viscoelastic Model[J].Nonlinear Analysis,2015,120:154-170.
  • 7TEMAM R.Infinite Dimensional Dynamical Systems in Mechanics and Physics[M].New York:Springer-Verlag,1988.
  • 8DOERING C R,GIBBON J D.Applied.Analysis of the Navier-Stokes Equations[M].Cambridge:Cambridge University Press,1995.
  • 9FOIAS C,MANLEY O,ROSA R,et al.Navier-Stokes Equations and Turbulence[M].Cambridge:Cambridge Univer- sity Press,2001.
  • 10LAYTON W,LEW ANDO WSKI R.A High Accuracy Leray-Deconvolution Model of Turbulence and Its Limiting Behav- ior[J].Analysis and Applications,2008,6(1):23-49.

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部