摘要
In order to modify inorganic particles as chromatic electrophoretic particles, an approach was designed and used to prepare Fe203 red electrophoretic particles. These Fe203-cationic hybrid nanoparticles (Fe203-CHNPs)were prepared through Fe203 core covered with polymer shell which was composed of SiO2 and P (DMAEMA-co-HMA) by using atom transfer radical polymerization (ATRP)technique. The SiO:-coating could introduce the functional group on the surfaceof inorganic particles, through which the polymer shell could be formed by using ATRP tech- nique. The results of Fourier transform infrared spectra (FT-IR), X-ray photoelectron spectroscopy (XPS) and thermal gravimetric analysis (TGA)confirmed the chemical compositions of Fe2O3-CHNPs; the images of transmission elec- tron microscopy (TEM) indicated the core-shell structure of Fe2O3-CHNPs; the measurements of dynamic light scatter- ing (DLS) showed a 253.7 nm average particle size with narrow size distribution; and the zeta potential measurements identified the high chargeability of Fe2O3-CHNPs. Furthermore, the resulting nanoparticles were successfully applied in the electrophoretic display cell, which demonstrated that it was an effective approach to preparing chromatic elec- trophoretic particles.
In order to modify inorganic particles as chromatic electrophoretic particles, an approach was designed and used to prepare Fe2O3 red electrophoretic particles. These Fe2O3-cationic hybrid nanoparticles(Fe2O3-CHNPs)were prepared through Fe2O3 core covered with polymer shell which was composed of SiO 2 and P(DMAEMA-co-HMA)by using atom transfer radical polymerization(ATRP)technique. The Si O2-coating could introduce the functional group on the surfaceof inorganic particles, through which the polymer shell could be formed by using ATRP technique. The results of Fourier transform infrared spectra(FT-IR), X-ray photoelectron spectroscopy(XPS)and thermal gravimetric analysis(TGA)confirmed the chemical compositions of Fe2O3-CHNPs; the images of transmission electron microscopy(TEM)indicated the core-shell structure of Fe2O3-CHNPs; the measurements of dynamic light scattering(DLS)showed a 253.7 nm average particle size with narrow size distribution; and the zeta potential measurements identified the high chargeability of Fe2O3-CHNPs. Furthermore, the resulting nanoparticles were successfully applied in the electrophoretic display cell, which demonstrated that it was an effective approach to preparing chromatic electrophoretic particles.