期刊文献+

Significant enhancement of UV emission in ZnO nanorods subject to Ga+ ion beam irradiation 被引量:1

Significant enhancement of UV emission in ZnO nanorods subject to Ga+ ion beam irradiation
原文传递
导出
摘要 在光电子的 ZnO nanomaterials 的应用仍然由于他们的不够的光致发光效率被限制。以便优化 ZnO nanorods 的光致发光性质,在与在不同离子精力(0.5 keV16 keV ) 的 Ga <sup>+</sup> 离子照耀的关联,在 Si 底层上种的垂直地排列的 ZnO nanorods 的紫外排放在现在的学习被调查。我们发现紫外紧张与增加 Ga <sup>+</sup> 离子精力很快增加了,直到它在 2 keV,在点,紧张比由成长得当的 ZnO nanorods 生产了那高约 50 倍附近的最大值。低精力的 Ga <sup>+</sup> 离子的轻轻的轰炸把缺点从 ZnO nanorod 表面移开。在另一方面, Ga <sup>+</sup> 离子植入进 nanorods,导致压缩紧张。在表面缺点和压缩紧张的介绍的移动之上的水晶格子的完美的安排是贡献紫外轻产生的重要改进的二个因素,这被相信。 Applications of ZnO nanomaterials in optoelectronics are still limited due to their insufficient photoluminescence efficiency. In order to optimize the photoluminescence properties of ZnO nanorods, the UV emission of vertically aligned ZnO nanorods grown on a Si substrate, in correlation with Ga+ ion irradiation at different ion energies (0.5 keV-16 keV), was investigated in the present study. We found that the UV intensity increased rapidly with increasing Ga+ ion energy, up to its maximum around 2 keV, at which point the intensity was approximately 50 times higher than that produced by as-grown ZnO nanorods. The gentle bombardment of low-energy Ga+ ions removes defects from ZnO nanorod surfaces. The Ga+ ions, on the other hand, implant into the nanorods, resulting in compressive strain. It is believed that the perfect arrangement of the crystal lattice upon removal of surface defects and the introduction of compressive strain are two factors that contribute to the significant enhancement of UV light generation.
出处 《Nano Research》 SCIE EI CAS CSCD 2015年第6期1857-1864,共8页 纳米研究(英文版)
基金 This research was support by SUG (Start-up funding in NTU), Tier i (AcRF grant MOE Singapore M401992), Tier 2 (AcRF grant MOE Singapore M4020159) and the Chinese Natural Science Foundation (Grant 51271031, 60906053, 62174118 and 51308050309).
关键词 离子束照射 紫外发光 纳米棒 ZnO 光致发光特性 离子能量 表面缺陷 ZnO nanorods,photoluminescenceenhancement,UV emission,Ga+ ion beam
  • 相关文献

参考文献29

  • 1Tang, Z. K.; Wong, G. K. L.; Yu, P.; Kawasaki, M.; Ohtomo, A.; Koinuma, H.; Segawa, Y. Room-temperature ultraviolet laser emission from self-assembled ZnO micro- crystallite thin films. Appl. Phys. Lett. 1998, 72, 3270-3272.
  • 2Zhang, B. P.; Binh, N. T.; Wakatsuki, K.; Segawa, Y.; Yamada, Y.; Usami, N., Kawasaki, M.; Koinuma, H. Formation of highly-aligned ZnO tubes on sapphire (0001) substrates. Appl. Phys. Lett. 2004, 84, 40984100.
  • 3Zeng, H. B.; Duan, G. T.; Li, Y., Yang, S. K.; Xu, X. X.; Cai, W. P. Blue luminescence of ZnO nanoparticles based on non-equilibrium processes: Defect origins and emission controls. Adv. Funet. Mater. 2010, 20, 561-572.
  • 4Ozgur, U.; Alivov, Y. I.; Liu, C.; Teke, A.; Reshchikov, M. A.; Dogan, S.; Avrutin, V.; Cho, S. J.; Morkoc, H. A com- prehensive review of ZnO materials and devices. J. Appl. Phys. 2005, 98, 041301.
  • 5Kim, T. W., Kawazoe, T., Yamazaki, S.; Ohtsu, M., Sekiguchi, T. Low-temperature orientation-selective growth and ultraviolet emission of single-crystal ZnO nanowires. Appl. Phys. Lett. 2004, 84, 3358-3360.
  • 6Yadian, B.; Liu, H.; Wei, Y. F.; Wu, J. S.; Zhang, S.; Sun, L. F.; Zhao, C. W.; Liu, Q.; Ramanujan, R. V.; Zhou, K. et al. Towards perfectly ordered novel ZnO/Si nano-heterojunction arrays. Small 2014, 10, 344-348.
  • 7Yang, Y.; Tay, B. K.; Sun, X. W.; Sze, J. Y.; Han, Z. J.; Wang, J. X.; Zhang, X. H.; Li, Y. B.; Zhang, S. Quenching of surface-exciton emission fi'om ZnO nanocombs by plasma immersion ion implantation. Appl. Phys. Left. 2007, 91, 071921.
  • 8Yang, Y.; Sun, X. W.; Tay, B. K.; Cao, P. H. T.; Wang, J. X.; Zhang, X.H. Revealing the surface origin of green band emission from ZnOnanostructures by plasma immersion ion implantation induced quenching. Appl. Phys. 2008, 103, 064307.
  • 9Lin, C. C.; Chen, H. P.; Liao, H. C.; Chen, S. Y. Enhanced luminescent and electrical properties of hydrogen-plasma ZnO nanorods grown on wafer-scale flexible substrates. Appl. Phys. Lett. 2005, 86, 183103.
  • 10Chen, R.; Ye, Q. L.; He, T. C.; Wu, T.; Sun, H. D. Uniaxial tensile strain and exciton-phonon coupling in bent ZnOnanowires. Appl. Phys. Lett. 2011, 98, 241916.

同被引文献6

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部