期刊文献+

Multifunctional electrospinning composite fibers for orthotopic cancer treatment in vivo 被引量:2

Multifunctional electrospinning composite fibers for orthotopic cancer treatment in vivo
原文传递
导出
摘要 A multifunctional, dual-drug carrier platform was successfully constructed. Core-sheU structured NaGdF4:Yb/Er@NaGdF4:Yb@mSiO2-polyethylene glycol (abbreviated as UCNPS) nanopartides loaded with the antiturnor drug, doxorubicin (DOX) were incorporated into poly(^-caprolactone) (PCL) and gelatin loaded with antiphlogistic drug, indomethacin (MC) to form nanofibrous fabrics (labeled as MC/UCNPS/DOX) via electrospinning process. The resultant multifunctional spinning pieces can be surgically implanted directly at the tumor site of mice as an orthotopic chemotherapy by controlled-release DOX from mesoporous silicon dioxide (SiO2) and upconversion fluorescence/magnetic resonance dual-model imaging through NaGdF4:Yb/Er@NaGdF4:Yb embedded in MCfldCNPS/DOX invivo. 一个多功能的、双药的搬运人平台成功地被构造。核心壳组织了 NaGdF <sub>4</sub>:Yb/Er@NaGdF<sub>4</sub>:Yb@mSiO<sub>2</sub>-polyethylene 乙二醇(作为 UCNPS 缩短了) 与 antitumor 药装载的 nanoparticles, doxorubicin (纪录影片) 被合并到 poly (-caprolactone)( 打印机控制语言) 和明胶与消炎的药装载了,消炎痛(MC ) 到形式 nanofibrous 织物(作为 MC/UCNPS/DOX 标记) 经由 electrospinning 过程。结果的多功能的旋转片能通过手术作为 orthotopic 化疗在老鼠的肿瘤地点直接被植入由从 mesoporous 硅二氧化物的控制版本纪录影片(通过 NaGdF <sub>4</sub>:Yb/Er@NaGdF<sub>4</sub>:Yb 的双模型的成像在 vivo 在 MC/UCNPS/DOX 嵌入的 SiO <sub>2</sub>) 和 upconversion fluorescence/magnetic 回声。
出处 《Nano Research》 SCIE EI CAS CSCD 2015年第6期1917-1931,共15页 纳米研究(英文版)
基金 This project is financially supported by the National Natural Science Foundation of China (NSFC, Nos. 51332008, 51372243, 51422209, and 51202239), the National Basic Research Program of China (No. 2014CB643803).
关键词 electrospinning orthotopic TREATMENT controlled release multiple structure 多功能 癌症治疗 复合纤维 原位 体内 静电 介孔二氧化硅 药物载体
  • 相关文献

参考文献3

二级参考文献60

  • 1Seo, W. S.; Lee, J. H.; Sun, X. M.; Suzuki, Y.; Mann, D.; Liu, Z.; Terashima, M.; Yang, P. C.; McConne[l, M. V.; Nishimura, D. G.; Yang, P. C. et al. FeCo/graphitic-shell nanocrystals as advanced magnetic-resonance-imaging and near-infrared agents. Nat. Mater. 2006, 5, 971-976.
  • 2Jun, Y. W.; Lee, J. H.; Cheon, J. Chemical design of nano- particle probes for high-performance magnetic resonance imaging. Angew. Chem. Int. Ed 2008, 47, 5122-5135.
  • 3Hahn, M. A.; Singh, A. K.; Sharma, P.; Brown, S. C.; Moudgil, B. M. Nanoparticles as contrast agents for in-vivo bioimaging: Current status and future perspectives. Anal. Bioanal. Chem. 2011, 399, 3-27.
  • 4Lim, E. K.; Huh, Y. M.; Yang, J.; Lee, K.; Suh, J. S.; Haam, S. pH-Triggered drug-releasing magnetic nanoparticles for cancer therapy guided by molecular imaging by MRI. Adv. Mater. 2011, 23, 2436-2442.
  • 5Xing, H. Y.; Bu, W. B.; Zhang, S. J.; Zheng, X. P.; Li, M.; Chen, F.; He, Q. J.; Zhou, L. P.; Peng, W. J.; Hua, Y. Q. Multifunctional nanoprobes for upconversion fluorescence, MR and CT trimodal imaging. Biomaterials 2012, 33, 1079-1089.
  • 6Hyafil, F.; Cornily, J. C.; Feig, J. E.; Gordon, R.; Vucic, E.; Amirbekian, V.; Fisher, E. A.; Fuster, V.; Feldman, L. J.; Fayad, Z. A. Noninvasive detection of macrophages using a nanoparticulate contrast agent for computed tomography. Nat. Med. 2007, 13, 636-641.
  • 7Baker, M. Whole-animal imaging: The whole picture. Nature 2010, 463, 977-980.
  • 8Na, H. B.; Hyeon, T. Nanostructured T1 MRI contrast agents. J. Mater. Chem. 2009, 19, 6267-6273.
  • 9Kumar, R.; Roy, I.; Ohulchanskky, T. Y.; Vathy, L. A.; Bergey, E. J.; Sajjad, M.; Prasad, P. N. In vivo biodistribution and clearance studies using multimodal organically modified silica nanoparticles. ACS Nano 2010, 4, 699-708.
  • 10Lee, Y. C.; Chen, D. Y.; Dodd, S. J.; Bouraoud, N.; Koretsky, A. P.; Krishnan, K. M. The use of silica coated MnO nanoparticles to control MRI relaxivity in response to specific physiological changes. Biomaterials 2012, 33, 3560-3567.

共引文献20

同被引文献4

引证文献2

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部