期刊文献+

基于高光谱成像技术的灵武长枣常见缺陷检测 被引量:4

Detection of common defects in jujube fruit using hyperspectral imaging
下载PDF
导出
摘要 以灵武长枣为研究对象,利用高光谱成像技术结合主成分分析法(principal component analysis,PCA)和最小噪声分离法(minimum noise fraction,MNF)对长枣缺陷进行快速检测与识别,主要探讨样本背景对缺陷识别的影响。首先,采集虫眼、裂痕、正常枣的高光谱图像,利用PCA法和MNF法分别对其降维去噪,选择虫眼与正常枣的PC1和M1图像、裂痕枣的PC2和M2图像进行缺陷识别,经PCA分析后的缺陷识别率均为100%,MNF处理后的识别率分别为69.2%,56.8%,100%;随后对其高光谱图像进行掩模去背景,再对其降维去噪后检测识别,PCA后的识别率均为100%,MNF后的识别率分别为73.1%,65.9%,100%。结果表明:利用高光谱成像技术结合两种降维去噪法对长枣常见缺陷的识别是可行的,背景干扰对于PCA法的缺陷识别不影响,其识别效果优于MNF法,且去背景后的MNF法缺陷识别率较未去背景的有所提高,为后续长枣缺陷的在线检测提供理论依据。 A hyperspectral imaging technology combined with the principal component analysis(PCA)and the minimum noise fraction(MNF)methods were developed for the detection of common defects in Lingwu long jujubes,and investigated the influence of the background to recognition of defects.Firstly,the hyperspectral images of jujube samples(insect hole,crack and intact jujubes)were acquired.Secondly,the PCA and MNF methods were used to reduce dimensionality of hyperspectral images and to separate the noise from signals effectively.The PC1 and M1images of insect hole and intact jujube,PC2 and M2images of crack jujube were selected to distinguish different type of jujubes.By the PCA method,the classification rates of three kinds of jujubes all were 100%.And by the MNF method,the classification rates of insect hole jujubes,crack jujubes and intact jujubes were 69.2%,56.8%,100%,respectively.Then,the masked original hyperspectral images were to remove the effect of background and analyzed by the PCA and MNF method again.The classification rates by the PCA method were all 100%,and the classification rates by the MNF method were 73.1%,65.9%,100%,respectively.The results showed that the hyperspectral imaging technology combined with PCA and MNF methods were feasible.The influence of the background by the MNF method to defect recognition was slight and the impact to defect recognition by the PCA method gained the advantage over the MNF method.The recognition rate of the MNF method combined with background mask was better than that of no background mask,and to provide the theory basis for the common defects of online detection in future.
机构地区 宁夏大学农学院
出处 《食品与机械》 CSCD 北大核心 2015年第3期62-65,86,共5页 Food and Machinery
基金 国家科技支撑计划(编号:2012BAF07B06) 国家自然科学基金资助项目(编号:31060233) 2011年度宁夏回族自治区科技攻关计划项目(编号:20110501)
关键词 高光谱成像技术 主成分分析 最小噪声分离 掩模 长枣 缺陷 hyperspectral imaging principal component analysis minimum noise fraction masking long jujubes defect
  • 相关文献

参考文献23

  • 1徐爽,何建国,易东,贺晓光.基于高光谱图像技术的长枣糖度无损检测[J].食品与机械,2012,28(6):168-170. 被引量:21
  • 2刘燕德,张光伟.高光谱成像技术在农产品检测中的应用[J].食品与机械,2012,28(5):223-226. 被引量:31
  • 3Johnson Ili ()wen N, Slidell Mark, Kreishman Peter, et al. Hy- perspectral imaging- an emerging technology as a potential novel adjunct in assessing peripheral perfusion deficits and success of lower extremity revascularizations[J]. Journal of the American College of Surgeons(SlOT2-7515), 2008, 207(3): Sl14.
  • 4Kangjin Lee, Sukwon Kang, Stephen R Delwiche, et al. Correlation analysis of hyperspectral imagery for nmltispectral wavelength selec- tion for detection of defects on apples[J]. ,-nsing and Instrumentation for Food Quality and .Safety, 2008, 2(2): 90-96.
  • 5Xing Juan, Guyer Daniel, Ariana Diwan, et al. Determining op- timal wavehands using genetic algorithm for detection of interna- linsect infestation in tart cherry[J]. Sens. oK. Instrumen. Food Qual, 2008,28(2) :161-167.
  • 6Yasasvy Nanyam, Ruplal Ghoudhary, Lalit Gupta, et al. A deci- sion-fusion strategy for fruit quality inspection using hyperspec- t ral imaging[J]. Biosystems Engineering, 2012,111 ( 1 ) : 118 - 125.
  • 7Qin Jian-wei, Thomas F B, Mark A R, et al. Detection of citrus canker using hyperspectra| reflectance imaging with spectral in- formation divergence[J]. Journal of Food Engineering, 2009,93 (2) :183-191.
  • 8苏文浩,何建国,刘贵珊,王松磊,贺晓光,吴龙国.近红外高光谱图像技术在马铃薯外部缺陷检测中的应用[J].食品与机械,2013,29(5):127-133. 被引量:11
  • 9薛龙,黎静,刘木华.利用高光谱图像技术检测梨表面碰压伤的试验研究[J].粮油加工,2009(4):136-139. 被引量:11
  • 10思振华,何建国,刘贵珊,王松磊,贺晓光,施健,罗瑞明.基于高光谱图像技术羊肉表面污染无损检测[J].食品与机械,2013,29(5):75-79. 被引量:10

二级参考文献175

共引文献252

同被引文献66

引证文献4

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部