期刊文献+

Understanding the stability and reactivity of ultrathin tellurium nanowires in solution: An emerging platform for chemical transformation and material design 被引量:1

Understanding the stability and reactivity of ultrathin tellurium nanowires in solution: An emerging platform for chemical transformation and material design
原文传递
导出
摘要 nanomaterials 的稳定性和反应具有为他们的申请的关键重要性,但是稳定性的长期的效果和在实际条件下面的 nanomaterials 的反应仍然不是理解的井。在这研究,我们首先建立了全面策略通过一个加速的氧化过程在水的答案作为模型材料与 ultrathin 碲 nanowires TeNWs 从反应动力学的观点调查高度反应的 nanomaterial 的稳定性。这允许我们用在不同条件下面在动态氧化过程期间捕获的中间的 nanostructures 由一个化学转变过程为另外的唯一的一个维的 nanostructures 的设计和合成建议一条新途径。实质上, ultrathin TeNWs 的氧化是包含液体,气体和稳固的阶段的煤气固体的反应。在水的答案的 ultrathin TeNWs 的氧化进程能被划分成三个阶段,这被表明了,也就是,限制的氧, ultrathin TeNWs 限制和质量转移限制阶段的抵抗。为 ultrathin TeNWs 的明显的氧化动力学是近似与第一顺序反应动力学一致当模特儿并且有象 13.53 kJ 一样低的一个明显的激活精力 ? 敤 ? 楤? 敗捩?楥慬? 瑳敨楳? 畡 ? 瑥慷 ?┰瘠牥 k 吗?? The stability and reactivity of nanomaterials are of crucial importance for their application, but the long-term effects of stability and reactivity of nanomaterials under practical conditions are still not well understood. In this study, we first established a comprehensive strategy to investigate the stability of a highly reactive nanomaterial from the viewpoint of reaction kinetics with ultrathin tellurium nanowires (TeNWs) as a model material in aqueous solution through an accelerated oxidation process. This allowed us to propose a new approach for the design and synthesis of other unique one-dimensional nanostructures by a chemical transformation process using the intermediate nanostructures "captured" during the dynamic oxidation process under different conditions. In essence, the oxidation of ultrathin TeNWs is a gas-solid reaction which involves liquid, gas and solid phases. It has been demonstrated that the oxidation process of ultrathin TeNWs in aqueous solution can be divided into three stages, namely oxygen limiting, ultrathin TeNWs limiting and mass transfer resistance limiting stages. The apparent oxidation kinetics for ultrathin TeNWs is approximately in accord with a first order reaction kinetics model and has an apparent activation energy as low as TeNWs are thermodynamically unstable 13.53 kJ.mol^-1, indicating that ultrathin However, the unstable nature of ultrathin TeNWs is actually an advantage since it can act as an excellent platform to help us synthesize and design one-dimensional functional nanomaterials--with special structures and distinctive properties--which are difficult to obtain by a direct synthesis method.
出处 《Nano Research》 SCIE EI CAS CSCD 2015年第4期1081-1097,共17页 纳米研究(英文版)
关键词 材料设计 化学转化 稳定性 反应性 水溶液 纳米线 超薄 平台 stability,reactivity,oxidation,reaction kinetics,chemical transformation,storage,ultrathin nanowires
  • 相关文献

参考文献4

二级参考文献13

共引文献67

同被引文献1

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部