期刊文献+

Solution processed MoS2-PVA composite for subbandgap mode-locking of a wideband tunable ultrafast Er:fiber laser 被引量:14

Solution processed MoS2-PVA composite for subbandgap mode-locking of a wideband tunable ultrafast Er:fiber laser
原文传递
导出
摘要 我们制作自立的很少层铝二硫化物(瞬间 < 潜水艇 class= “ a-plus-plus ” > 由化学上太古的 MoS2 晶体和使用的液体阶段脱落合成的 2 </sub>)-polymer 这表明一条宽带悦耳, ultrafast 锁模式的纤维激光。稳定,微微秒脉搏,从 1,535 nm 悦耳到 1,565 nm,被产生,相应于在瞬间下面的光子精力 < 潜水艇 class= “ a-plus-plus ” > 2 </sub> 材料 bandgap。这些结果贡献学习转变金属 dichalcogenides 的非线性的光性质的工作的成长身体为 ultrafast photonic 应用的现在的新机会。 We fabricate a free-standing few-layer molybdenum disulfide (MoS2)-polymer composite by liquid phase exfoliation of chemically pristine MoS2 crystals and use this to demonstrate a wideband tunable, ultrafast mode-locked fiber laser. Stable, picosecond pulses, tunable from 1,535 nm to 1,565 nm, are generated, corresponding to photon energies below the MoS2 material bandgap. These results contribute to the growing body of work studying the nonlinear optical properties of transition metal dichalcogenides that present new opportunities for ultrafast photonic applications.
出处 《Nano Research》 SCIE EI CAS CSCD 2015年第5期1522-1534,共13页 纳米研究(英文版)
关键词 聚合物复合材料 锁模光纤激光器 宽带可调谐 二硫化钼 非线性光学性质 加工 MOS2 皮秒脉冲 molybdenum disulfide,two-dimensional materials,liquid phase exfoliation,polymer composites,saturable absorbers,ultrafast lasers
  • 相关文献

参考文献75

  • 1Liu, X.; Si, J.; Chang, B.; Xu, G.; Yang, Q.; Pan, Z.; Xie, S.; Ye, P.; Fan, J.; Wan, M. Third-order optical nonlinearity of the carbon nanotubes. Appl. Phys. Lett. 1999, 74, 164-166.
  • 2Hendry, E., Hale, P. J.; Moger, J.; Savchenko, A. K.; Mikhailov, S. A. Coherent nonlinear optical response of graphene. Phys. Rev. Lett. 2010, 105, 097401.
  • 3Brida, D.; Tomadin, A.; Manzoni, C.; Kim, Y. J.; Lombardo, A.; Milana, S.; Nair, R. R.; Novoselov, K. S.; Ferrari, A. C.; Cerullo, G.; et al. Ultrafast collinear scattering and carrier multiplication in graphene. Nat. Commun. 2013, 4, 1987.
  • 4Tomadin, A.; Brida, D.; Cerullo, G.; Ferrari, A. C.; Polini, M. Nonequilibrium dynamics of photoexcited electrons in graphene: collinear scattering, auger processes, and the impact of screening. Phys. Rev. B 2013, 88, 035430.
  • 5Hasan, T.; Sun, Z.; Wang, F.; Bonaccorso, F.; Tan, P. H.; Rozhin, A. G.; Ferrari, A. C. Nanotube-polymer compositesfor ultrafast photonics. Adv. Mater. 2009, 21, 3874-3899.
  • 6Sun, Z.; Hasan, T.; Torrisi, F.; Popa, D.; Privitera, G.; Wang, F.; Bonaccorso, F.; Basko, D. M.; Ferrari, A. C. Graphene A. ACSNano 2010, 4, 803-810.
  • 7Set, S. Y.; Yaguchi, H.; Tanaka, Y.; Jablonski, M.; Sakakibara, Y.; Rozhin, A.; Tokumoto, M.; Kataura, H.; Achiba, Y.; Kikuchi, K. Mode-locked fiber lasers based on a saturable absorber incorporating carbon nanotubes. In OSA Trends in Optics and Photonics (TOPS), Optical Fiber Communication Conference; Washington, D.C., 2003; p. 44.
  • 8Bao, Q.; Zhang, H.; Wang, Y.; Ni, Z.; Yan, Y.; Shen, Z. X.; Loh, K. P.; Tang, D. Y. Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers. Adv. Funct. Mater. 2009 19, 3077-3083.
  • 9Zhang, H.; Tang, D. Y.; Zhao, L. M.; Bao, Q. L.; Loh, K. P. Large energy mode locking of an erbium-doped fiber laser with atomic layer graphene. Opt. Express 2009, 17, 17630- 17635.
  • 10Dean, J. J.; van Driel, H. M. Second harmonic generation from graphene and graphitic films. Appl. Phys. Lett. 2009, 95, 261910.

同被引文献37

引证文献14

二级引证文献38

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部