期刊文献+

Three-dimensional porous graphene-metal oxide composite microspheres: Preparation and application in Li-ion batteries 被引量:7

Three-dimensional porous graphene-metal oxide composite microspheres: Preparation and application in Li-ion batteries
原文传递
导出
摘要 使用新三维(3D ) 多孔的 graphene 金属氧化物合成 microspheres 首先这里作为为 Li 离子电池(解放) 的阳极材料被介绍。3D graphene microspheres 是由 graphene 表组成的单个空 graphene nanospheres 的总数。金属氧化物 nanocrystals 一致地在 microspheres 的 graphene 表面上被散布。3D 多孔的 graphene-SnO < 潜水艇 class= “ a-plus-plus ” > 因为他们的优异电气化学的性质, 2 </sub> microspheres 为调查作为第一目标材料被选择。3D 多孔的 graphene-SnO < 潜水艇 class= “ a-plus-plus ” > 2 </sub> 和 graphene microspheres 和赤裸的 SnO < 潜水艇 class= “ a-plus-plus ” > 2 </sub> 粉末交付 1,009, 196,和 52 mAh 癯摥眠敨 ? 桴 ? 桰瑯 ' 椰嫕湐擢撃龖 ` 整 ? 湩瀠瑯獡楳浵戠牯瑡 ? 畢晦牥猠汯瑵潩 ? 瀨的分泌物能力?? The use of new three-dimensional (3D) porous graphene-metal oxide composite microspheres as an anode material for Li-ion batteries (LIBs) is first introduced here. 3D graphene microspheres are aggregates of individual hollow graphene nanospheres composed of graphene sheets. Metal oxide nanocrystals are uniformly distributed over the graphene surface of the microspheres. The 3D porous graphene-SnO2 microspheres are selected as the first target material for investigation because of their superior electrochemical properties. The 3D porous graphene-SnO2 and graphene microspheres and bare SnO2 powders deliver discharge capacities of 1,009, 196, and 52 mAh·g^-1, respectively, after 500 cycles at a current density of 2 A·g^-1 .The 3D porous graphene-SnO2 microspheres exhibit uniquely low charge transfer resistances and high Li-ion diffusivities before and after cycling.
出处 《Nano Research》 SCIE EI CAS CSCD 2015年第5期1584-1594,共11页 纳米研究(英文版)
关键词 锂离子电池 金属氧化物 多孔石墨 复合微球 三维 SNO2 应用 制备 graphene,metal oxide,nanostructures,electrode material,batteries
  • 相关文献

参考文献5

二级参考文献95

  • 1Besenhard, J. O.; Yang, J.; Winter, M. Will advanced lithium-alloy anodes have a chance in lithium-ion batteries? J. Power Sources 1997, 68, 87-90.
  • 2Wen, C. J.; Huggins, R. A. Chemical diffusion in intermediate phases in the lithium-silicon system. J. Solid State Chem. 1981, 37, 271-278.
  • 3Bruce, P. G.; Scrosati, B.; Tarascon, J. Nanomaterials for rechargeable lithium batteries. Angew. Chem. Int. Ed. 2008, 47, 2930-2946.
  • 4Scrosati, B.; Hassoun, J.; Sun, Y. K. Lithium-ion batteries. A look into the future. Energy Environ. Sci. 2011, 4, 3287-3295.
  • 5Tabema, P. L.; Mitra, S.; Poizot, P.; Simon, P.; Tarascon, J. M. High rate capabilities Fe304-based Cu nano-architectured electrodes for lithium-ion battery applications. Nat. Mater. 2006, 5, 567-573.
  • 6Wang, L.; Cheng, W.; Gong, H.; Wang, C.; Wang, D.; Tang, K.; Qian, Y. Facile synthesis of nanocrystalline-assembled bundle-like CuO nanostructure with high rate capacities and enhanced cycling stability as an anode material for lithium-ion batteries. J. Mater. Chem. 2012, 22, 11297-11302.
  • 7Wang, X.; Yang, Z.; Sun, X.; Li, X.; Wang, D.; Wang, P.; He, D. NiO nanocone array electrode with high capacity and rate capability for Li-ion batteries. J. Mater. Chem. 2011, 21, 9988-9990.
  • 8Cabana, J.; Monconduit, L.; Larcher, D.; Palacin, R. Beyond intercalation-based Li-ion batteries: The state of the art and challenges of electrode materials reacting through conversion reactions. Adv. Mater. 2010, 22, E170-E192.
  • 9Nam, K. T.; Kim, D. W.; Yoo, P. J.; Chiang, C. Y.; Meethong, N.; Hammond, P. T.; Chiang, Y. M.; Belcher, A. M. Virus-enabled synthesis and assembly of nanowires for lithium ion battery electrodes. Science 2006, 312, 885-888.
  • 10Arico, A. S.; Bruce, P.; Scrosati, B.; Tarascon, J. M.; van Schalkwijk, W. Nanostructured materials for advanced energy conversion and storage devices. Nat. Mater. 2005, 4, 366-377.

共引文献51

同被引文献65

引证文献7

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部