期刊文献+

工业化LiNi_(0.5)Co_(0.2)Mn_(0.3)O_2阴极材料精细合成条件研究

Refining synthesis condition of industrial LiNi_(0.5)Co_(0.2)Mn_(0.3)O_2 cathode material
下载PDF
导出
摘要 通过高温固相法合成了层状三元LiNi0.5Co0.2Mn0.3O2阴极材料,考察了烧结温度和锂过量的微小差别对电极性能的影响。扫描电子显微镜实验证实当烧结温度高于980℃时,合成的样品棱角分明,而在950℃以下合成的样品主要是球形。随着循环的进行,对于在900和930℃合成的样品,放电容量几乎成线性降低;当合成温度高于980℃时,随着循环的进行放电容量呈S型变化。900℃合成的样品初始比容量为170 mAh/g左右(循环窗口3.0~4.3 V),100次以后比容量为140 mAh/g。锂过量6%(摩尔分数)时综合性能较好。 The ternary layered LiNi0.5Co0.2Mn0.3O2 was synthesized by high-temperature solid state reaction method. The effect of the tiny difference of the sintering temperature and Li excess content on the electrode performance was investigated. The SEM measurements show that the samples synthesized at the temperatures of more than 980 ℃ have obvious edges and comers, while the samples synthesized at the temperature of less than 950℃ are composite of spherical particles. During the cycle, the discharge capacity linearly decreases for the samples synthesized at 900 and 930 ℃. The samples synthesized at the temperatures of more than 980 ℃ exhibit a S-shaped cycling discharge capacity curve. The sample synthesized at 900℃exhibits a initial discharge capacity of about 170 mAh/g and about 140 mAh/g after 100 cycles in the operation potential range of 3.0-4.3 V. In addition, the Li excess content in the precursor should be more than 6mol%.
出处 《电源技术》 CAS CSCD 北大核心 2015年第6期1183-1185,共3页 Chinese Journal of Power Sources
基金 江苏省自然科学基金(BK2009110) 科技部专项基金(2009EG111014)
关键词 合成条件 锂离子电池 三元层状阴极 synthesis condition lithium ion battery ternary layered cathode
  • 相关文献

参考文献12

  • 1MAHMOUD A, SAADOUNEA I, AMARILL J M, et al. On the LiCo~3Niv6Mnl/602 positive electrode material [J]. Electrochimica Acta, 2011, 56: 4081-4086.
  • 2蔡少伟.锂离子电池正极三元材料的研究进展及应用[J].电源技术,2013,37(6):1065-1068. 被引量:34
  • 3王希文,路宗利.掺杂氧化镍锰钴锂材料的动力型锂离子电池[J].电源技术,2008,32(5):302-305. 被引量:2
  • 4朱广焱,刘雪省,潘磊,蒋宁懿.三元材料在锂离子动力电池上的应用[J].电源技术,2009,33(7):547-551. 被引量:21
  • 5WU Q, XU Y H, JU H. New type low-cost cathode materials for Li-ion batteries: mikasaite-type Fe2(SO4)3[J]. Ionics, 2013(19): 471-475.
  • 6XU Y H, WU J, JU H. Reassessment of the role of Ag as the dopant in Li-ion cathode materials [J]. J Eleetroanalytical Chem- istry, 2012(681): 84-88.
  • 7JU H, LI Z H, JU L, et al. Methyl methacrylate (MMA)-grafled polypropylene (PP) separator for rechargeable lithium metal battery [J]. ECS Electrochemistry Letters, 2012(1): A59-A62.
  • 8KIM H S, KIM K T, KIM Y S, et al. Effect of a surface treatment for LiNi~Cov3Mnv302 cathode material in lithium secondary batter- ies[J]. Metals and Materials International, 2008(14): 105-109.
  • 9IGAWA N, TAGUCHI T, FUKAZAWA H, et al. Crystal struc- ture and nuclear density distribution of LiCol/3Niv3MnteO2 analyzed by rietveld/maximum entropy method[J]. J American Ceramic So- ciety, 2010(93): 2144-2146.
  • 10LI L, LI X, WANG Z, et al. A simple and effective method to synthesize layered LiNi0.sCoo.~Mn0.~O2 cathode materials for lithiu- mion battery[J]. Powder Technology, 2011(206): 353-357.

二级参考文献19

共引文献54

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部