期刊文献+

Super-Parameterization in GRAPES: The Construction of SP-GRAPES and Associated Preliminary Results

Super-Parameterization in GRAPES: The Construction of SP-GRAPES and Associated Preliminary Results
原文传递
导出
摘要 Super-parameterization(SP) aims to explicitly represent deep convection within a coarse resolution global model by embedding a cloud resolving model(CRM) in each column of the mother model. For the first time, we implemented the SP in a mesoscale regional weather model, the Global/Regional Assimilation and Pr Ediction System(GRAPES). The constructed SP-GRAPES uses a two-dimensional(2D) CRM in each grid column. A control and two SP simulations are conducted for the Beijing "7.21" heavy rainfall event to evaluate improvements in GRAPES using SP. The SP-run-I is a basic SP run delivering microphysics feedback only, whereas the SP-run-II delivers both microphysical and cloud fraction feedbacks. A comparison of the runs indicates that the SP-run-I has a slightly positive impact on the precipitation forecast than the control run. However, the inclusion of cloud fraction feedback leads to an evident overall improvement, particularly in terms of cloud fraction and 24-h cumulative precipitation. Although this is only a preliminary study using SP-GRAPES, we believe that it will provide considerable guidance for follow-up studies using SP in China. Super-parameterization(SP) aims to explicitly represent deep convection within a coarse resolution global model by embedding a cloud resolving model(CRM) in each column of the mother model. For the first time, we implemented the SP in a mesoscale regional weather model, the Global/Regional Assimilation and Pr Ediction System(GRAPES). The constructed SP-GRAPES uses a two-dimensional(2D) CRM in each grid column. A control and two SP simulations are conducted for the Beijing "7.21" heavy rainfall event to evaluate improvements in GRAPES using SP. The SP-run-I is a basic SP run delivering microphysics feedback only, whereas the SP-run-II delivers both microphysical and cloud fraction feedbacks. A comparison of the runs indicates that the SP-run-I has a slightly positive impact on the precipitation forecast than the control run. However, the inclusion of cloud fraction feedback leads to an evident overall improvement, particularly in terms of cloud fraction and 24-h cumulative precipitation. Although this is only a preliminary study using SP-GRAPES, we believe that it will provide considerable guidance for follow-up studies using SP in China.
出处 《Journal of Meteorological Research》 SCIE CSCD 2015年第2期272-292,共21页 气象学报(英文版)
基金 Supported by the National Natural Science Foundation of China(41275104) National(Key)Basic Research and Development(973)Program of China(2013CB430106) National Science and Technology Support Program of China(2012BAC22B02)
关键词 super-parameterization GRAPES Beijing "7.21" heavy rainfall event cloud fraction precipitation forecast verification super-parameterization,GRAPES,Beijing "7.21" heavy rainfall event,cloud fraction,precipitation forecast verification
  • 相关文献

参考文献5

二级参考文献76

共引文献277

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部