期刊文献+

Mass and isotopic concentrations of water-insoluble refractory carbon in total suspended particulates at Mt.Waliguan Observatory(China)

Mass and isotopic concentrations of water-insoluble refractory carbon in total suspended particulates at Mt.Waliguan Observatory(China)
原文传递
导出
摘要 Mass concentration and isotopic values δ13C and 14C are presented for the water-insoluble refractory carbon (WIRC) component of total suspended particulates (TSP), collected weekly during 2003, as well as from October 2005 to May 2006 at the WMO-GAW Mt. Waliguan (WLG) site. The overall average WlRC mass concentration was (1183 ± 120)ng/m3 (n = 79), while seasonal averages were 2081 ± 1707 (spring), 454±205 (summer), 650 ±411 (autumn), and 1019 ± 703 (winter) ng/m3. Seasonal variations in WIRC mass concentrations were consistent with black carbon measurements from an aethalometer, although WIRC concentrations were typically higher, especially in winter and spring. The δ13C PDB value (-25.3 ± 0.8)%0 determined for WIRC suggests that its sources are C3 biomass or fossil fuel combustion. No seasonal change in δ13C PDB was evident. The average percent Modern Carbon (pMC) for 14C in WIRC for winter and spring was (67.2 ± 7.7)% (n = 29). Lower pMC values were associated with air masses trans- ported from the area east of WLG, while higher pMC values were associated with air masses from the Tibetan Plateau, southwest of WLG. Elevated pMC values with abnormally high mass concentrations of TSP and WIRC were measured during a dust storm event. Mass concentration and isotopic values δ13C and 14C are presented for the water-insoluble refractory carbon (WIRC) component of total suspended particulates (TSP), collected weekly during 2003, as well as from October 2005 to May 2006 at the WMO-GAW Mt. Waliguan (WLG) site. The overall average WlRC mass concentration was (1183 ± 120)ng/m3 (n = 79), while seasonal averages were 2081 ± 1707 (spring), 454±205 (summer), 650 ±411 (autumn), and 1019 ± 703 (winter) ng/m3. Seasonal variations in WIRC mass concentrations were consistent with black carbon measurements from an aethalometer, although WIRC concentrations were typically higher, especially in winter and spring. The δ13C PDB value (-25.3 ± 0.8)%0 determined for WIRC suggests that its sources are C3 biomass or fossil fuel combustion. No seasonal change in δ13C PDB was evident. The average percent Modern Carbon (pMC) for 14C in WIRC for winter and spring was (67.2 ± 7.7)% (n = 29). Lower pMC values were associated with air masses trans- ported from the area east of WLG, while higher pMC values were associated with air masses from the Tibetan Plateau, southwest of WLG. Elevated pMC values with abnormally high mass concentrations of TSP and WIRC were measured during a dust storm event.
出处 《Particuology》 SCIE EI CAS CSCD 2015年第3期24-31,共8页 颗粒学报(英文版)
基金 supported by the National Natural Sciences Foundation of China(Grant Nos.41175115 40830102 40575013 and 40175032)
关键词 Water-insoluble refractory carbon (WIRC)Mass concentration813C14CMt. Waliguan (WLG) Water-insoluble refractory carbon (WIRC)Mass concentration813C14CMt. Waliguan (WLG)
  • 相关文献

参考文献2

二级参考文献5

共引文献130

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部