摘要
Steel industries are a major contributor to aerosols in steel cities like Rourkela. We designed an air quality sampling program to characterize total suspended particulate (TSP) aerosol in urban areas of Rourkela and to identify their steel-related and other sources. Monitoring was carried out over 8 h, twice per week from January 2011 to December 2012. Metallic species of TSP aerosols were analyzed using an atomic absorption spectrophotometer; ionic species using the IS 3025 method; and carbonaceous species using a total organic carbon analyzer. Enrichment factor and Spearman's rank correlation analysis were carried out on compositional data. Significant seasonal variations were observed for TSP with totals in sum- mer 〉 spring 〉 winter 〉 monsoon. Low concentrations during monsoon reflected wet scavenging, while high concentrations during summer were related to wind turbulence and low humidity. The chemical mass balance model CMB8.2 was applied to apportion sources. Particles related to steel production, road dust, and soil were dominant in all seasons. A fertilizer plant was found to contribute particles in summer and monsoon. Wood combustion, diesel exhaust, and liquefied petroleum gas contributed significantly in spring and winter. While diesel exhaust, industrial manufacturing, solid waste burning, cement kilns, and construction were found to contribute to TSP at various times throughout the year.
Steel industries are a major contributor to aerosols in steel cities like Rourkela. We designed an air quality sampling program to characterize total suspended particulate (TSP) aerosol in urban areas of Rourkela and to identify their steel-related and other sources. Monitoring was carried out over 8 h, twice per week from January 2011 to December 2012. Metallic species of TSP aerosols were analyzed using an atomic absorption spectrophotometer; ionic species using the IS 3025 method; and carbonaceous species using a total organic carbon analyzer. Enrichment factor and Spearman's rank correlation analysis were carried out on compositional data. Significant seasonal variations were observed for TSP with totals in sum- mer 〉 spring 〉 winter 〉 monsoon. Low concentrations during monsoon reflected wet scavenging, while high concentrations during summer were related to wind turbulence and low humidity. The chemical mass balance model CMB8.2 was applied to apportion sources. Particles related to steel production, road dust, and soil were dominant in all seasons. A fertilizer plant was found to contribute particles in summer and monsoon. Wood combustion, diesel exhaust, and liquefied petroleum gas contributed significantly in spring and winter. While diesel exhaust, industrial manufacturing, solid waste burning, cement kilns, and construction were found to contribute to TSP at various times throughout the year.
基金
the Department of Science and Technology (DST) SR/FTP/ES-76/2009 for funding this study as part of the Fast Track Scheme for Young Scientist