期刊文献+

Contribution to the study of the effect of the interspecificity on a two nutrients competition model 被引量:1

Contribution to the study of the effect of the interspecificity on a two nutrients competition model
原文传递
导出
摘要 We consider a model of the exploitative competition of two micro-organisms for two complementary nutrients in a chemostat and take into account the interspecific interac- tion. The growth functions occurring in the model are of general type and the interaction functions are monotonic and positive. By the mean of the Thieme-Zhao theorem, we establish conditions for uniform persistence of the model.
出处 《International Journal of Biomathematics》 2015年第1期93-109,共17页 生物数学学报(英文版)
关键词 Dynamical systems CHEMOSTAT local stability uniform persistence comple- mentary nutrients interspeeific interaction. 竞争模型 养分 种间相互作用 一致持续生存 交互函数 微生物 恒化器
  • 相关文献

参考文献14

  • 1G. J. Butler and G. S. K. Wolkowicz, Exploitative competition in a chemostat for two complementary, and possible inhibitory, resources, Math. Biosci. 83 (1987) 1-48.
  • 2A. Covich, Ecological economics of foraging among coevolving animals and plants, Ann. Mo. Bot. Gard. 61 (1974) 794-805.
  • 3H. J. W. de Baar, von Liebig's law of the minimum and plankton ecology (1899-1991), Progr. Oceanography 33(4) (1994) 347-386.
  • 4S. B. Hsu, K. S. Cheng and S. P, Hubbell, Exploitative competition of micro-organism for two complementary nutrients in continuous culture, SIAM g. Appl. Math. 41 (1981) 422 444.
  • 5J. A. Leon and D. B. Tumpson, Competition between two species for two comple- mentary or substitutable resources, J. Theor. Biol. 50 (1975) 185 201.
  • 6B. Li, Global asymptotic behavior of the chemostat: General response functions and different removal rates, SIAM J. Appl. Math. 59(2) (1998) 411-422.
  • 7F. Mazenc and M. Malisoff, On stability and stabilization for models of chemostats with multiple limiting substrates, J. Biol. Dynam. 6(2) (2012) 612 627.
  • 8D. J. Rapport, An optimization model of~food seiection, [4nn. Nat. 105 (1971) 575-587.
  • 9H. Smith and P. Waltman, The Theory of the Chemostat (Cambridge University Press, Cambridge, UK, 1995).
  • 10H. R. Thieme, Persistence under relaxed point-dissipativity (with application to an epidemic model), SIAM J. Math. Anal. 24 (1993) 407-435.

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部