期刊文献+

A pest control model with state-dependent impulses 被引量:3

A pest control model with state-dependent impulses
原文传递
导出
摘要 In this paper, a pest control model with state-dependent impulses is firstly established, which relies on releasing of natural enemies, together with spraying pesticides. By using the successor function of differential equation geometry rules, the existence of order one periodic solution is discussed. According to the Analogue of Poincare's Criterion, the orbitally asymptotic stability of the order one periodic solution is obtained. Furthermore, we investigated the global attractor of the system. From a biological point of view, our results indicate that: (1) the pest population can be controlled below some threshold; (2) compared to single measure, it is more efficient to take two measures for reducing the level of the pests.
出处 《International Journal of Biomathematics》 2015年第1期111-122,共12页 生物数学学报(英文版)
基金 Research is supported by the National Natural Science Foundation of China (11271260), Shanghai Leading Academic Discipline Project (No. XTKX2012), the Hujiang Foundation of China (B14005) and the Innovation Program of Shanghai Municipal Education Committee (13ZZ116).
关键词 State-dependent impulses differential equation order one periodic solution successor function. 控制模型 害虫种群 状态相关 脉冲 解的存在性 轨道稳定性 全局吸引子 后继函数
  • 相关文献

参考文献3

二级参考文献17

  • 1D. D. Bainov and V. C. Covachev, Impulsive Differential Equations with a Small Parameter (World Scientific, Singapore, 1994).
  • 2D. D. Bainov and P. S. Simeonov, Impulsive Differential Equations: Asymptotic Prop- erties of the Solutions (World Scientific, Singapore, 1993).
  • 3E. M. Bonotto, Flows of characteristic 0+ in impulsive semidynamicM systems, J. Math. Anal. Appl. 332 (2007) 81-96.
  • 4L. Chen, Pest control and geometric theory of semi-dynamical systems, or. Beihua Univ. (Natural Sci.) 12 (2011) 1-9.
  • 5M. A. Han, S. C. Hu and X. B. Liu, On the stability of double homoclinic and heteroclinic cycles, Nonlinear Anal. 53 (2003) 701- 713.
  • 6G. Jiang, Q. Lu and L. Qian, Complex dynamics of a Holling type II prey-predator system with state feedback control, Chaos, Solitons, Fractals 31 (2007) 448-461.
  • 7V. Lakshmikantham, D. D. Bainov and P. S. Simeonov, Theory of Impulsive Differ- ential Equations (World Scientific, Singapore, 1989).
  • 8L. Nie, J. Peng, Z. Teng and L. Hu, Existence and stability of periodic solution of a Lotka-Volterra predator-prey model with state-dependent impulsive effects, J. Com- put. Appl. Math. 224 (2009) 544-555.
  • 9P. S. Simenov and D. D. Buinov, Orbital stability of the periodic solutions of autonomous systems with impulse effect, Int. J. Syst. Sci. 19 (1988) 2561-2585.
  • 10L. Sun and L. Chen, Permanence and complexity of the eco-epidemiological model with impulsive perturbation, Int. J. Biomath. 1 (2008) 121-132.

共引文献13

同被引文献12

引证文献3

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部