期刊文献+

基于逻辑回归的中文在线评论有效性检测模型 被引量:11

Detection model of effectiveness of Chinese online reviews based on logistic regression
下载PDF
导出
摘要 为了实现电子商务和社交网络中文在线评论有效性的自动化检测,提出了一种单一主题环境下基于逻辑回归的垃圾评论检测模型.中文在线评论有效性的检测可以归结为分类问题,结合中文在线评论的特点提取了9个特征以构建分类模型;为获取核心特征主题的相关度,采用基于关联规则的评论名词模式优化了ICTCLAS中文分词系统的主题识别,进而利用交叉语言模型获取在线评论主题相关度.实验中采取了人为标定的1 000条评论作为样本,把支持向量机分类模型作为对比进行试验,利用数据挖掘工具Weka进行计算.结果表明,采用优化评论名词模式下基于逻辑回归的垃圾评论检测模型结果的准确率达到83.54%,比支持向量机分类模型计算得到的准确率高2.10%. In order to realize automated detection of the effectiveness of Chinese online reviews in the context of e-commerce and social networks,a spam detection model based on logistic regression to solve single topic classification problem is proposed. The detection of effectiveness of Chinese online reviews can be regarded as a classification problem. According to the characteristics of Chinese online reviews,nine features are extracted to build the classification model. In order to extract the core feature-topic relevance,an association rule based reviewterm mode is utilized to optimize the topics identification in ICTCLAS( Institute of Computing Technology,Chinese Lexical Analysis System). The cross language model is then used to retrieve relevancy between online reviewtopics. In the experiment,a sample of 1 000 human-labeled reviews is used,and the support vector machine( SVM) classification model is adopted as a comparison. The calculation results of the data mining tool Weka demonstrate that the accuracy rate of the proposed logistic regression classification model based on the optimized reviewterm classification mode is 83. 54%,which is 2. 10% higher than that of the SVM classification model.
出处 《东南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2015年第3期433-437,共5页 Journal of Southeast University:Natural Science Edition
基金 国家自然科学基金资助项目(60803057) 国家高技术研究发展计划(863计划)资助项目(2015AA015904)
关键词 在线评论有效性 逻辑回归 关联规则 effectiveness of online review logistic regression association rule
  • 相关文献

参考文献15

  • 1中国互联网络信息中心.2013年中国网络购物市场研究报告[EB/OL].(2014-04-21)[2014-10-20].http://www, cnnic, cn/hlwfzyj/hlwxzbg/dzswbg/201404/t20140421_46598, htm.
  • 2Karkare V Y, Gupta S R. A survey on product evalua- tion using opinion mining [ J ]. International Journal of Computer Science and Applications, 2013, 6(2) : 306 - 312.
  • 3Sheibani A A. Opinion mining and opinion spare: a lit- erature review focusing on product reviews [ C]//2012 Sixth International Symposium on Telecommunications (IST). Tehran, Iran, 2012: 1109-1113.
  • 4Lim E P, Nguyen V A, Jindal N, et al. Detecting product review spammers using rating behaviors [ C ]// Proceedings of the 19th ACM International Conference on Information and Knowledge Management. New York, USA, 2010:939-948.
  • 5Jindal N, Liu B, Lim E P. Finding unusual review pat- terns using unexpected rules [ C ]//Proceedings of the 19th ACM International Conference on Information and Knowledge Management. New York, USA, 2010 : 1549 - 1552.
  • 6Mukherjee A, Kumar A, Liu B, et al. Spotting opinion spammers using behavioral footprints [ C ]//Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, USA, 2013: 632-640.
  • 7Jindal N, Liu B. Opinion spam and analysis [ C ]//Pro- ceedings of the 2008 International Conference on Web Search and Data Mining. New York, USA, 2008 : 219 - 230.
  • 8Ott M, Cardie C, Hancock J T. Negative deceptive o- pinion spam [ C ]//North American Chapter of the Asso- ciation for Computational Linguistics-Human Language Technologies. Atlanta, Georgia, 2013 : 497 - 501.
  • 9Lin Y, Zhu T, Wang X, et al. Towards online review spam detection [ C ]//Proceedings of the Companion Publication of the 23rd International Conference on World Wide Web Companion. New York, USA, 2014: 341 - 342.
  • 10Liu B. Sentiment analysis and opinion mining [ J ]. Synthesis Lectures on Human Language Technologies, 2012, 5(1) : 1 -167.

二级参考文献10

  • 1林传鼎,无.社会主义心理学中的情绪问题——在中国社会心理学研究会成立大会上的报告(摘要)[J].社会心理科学,2006,21(1):37-37. 被引量:15
  • 2Tsou Benjamin K Y, Kwong O Y, Wong W L. Sentiment and content analysis of Chinese news coverage [ J ]. International Journal of Computer Processing of Oriental Languages, 2005, 18(2) : 171-183.
  • 3Ekman P. Facial expression and emotion [ J]. Americam Psychologist, 1993, 48:384-392.
  • 4Yu Zhang, zhuoming Li, Fuji Ren, Shingo Kuroiwa. Semiautomatic emotion recognition from textual input based on the constructed emotion thesaurus[ C]. Proceedings of 2005 IEEE International Conference on Natural Language Processing and Knowledge Engineering (IEEE NLP-KE' 05). 2005 : 571-576.
  • 5许小颖,陶建华.汉语情感系统中情感划分的研究[C].第一届中国情感计算及智能交互学术会议论文集.2003:199-205.
  • 6Ekman P. An argument for basic emotions [ J]. Cognition and Emotion, 1992, 6: 169-200.
  • 7郑怀德,孟庆海.汉语形容词用法词典[M].北京:商务印书馆,2004.
  • 8Hugo Liu, Henry Lieberman, Ted Selker. A model of textual affect sensing using real-world knowledge [ C ] .Proceedings of the 8th International Conference on Intelligent User Interfaces. 2003: 125-132.
  • 9Hugo Liu, Ted Selker, Henry Lieberman. Visualizing the affective structure of a text document [ C ].Proceedings of Conference on Human Factors in Computing Systems. 2003 : 740-741.
  • 10Hua Wang, Helmut Prendinger, Takeo Igarashi. Communicating emotions in online chat using physiological sensors and animated text [ C ].Proceedings of Conference on Human Factors in Computing Systems. 2004: 1171- 1174.

共引文献388

同被引文献88

引证文献11

二级引证文献79

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部