期刊文献+

结合微博关注特性的UF_AT模型用户兴趣挖掘研究 被引量:5

Research on micro-blog user's interest mining based on UF_AT model which combining with focusing feature of microblog
下载PDF
导出
摘要 微博作为国内主流社交网站,信息量与日俱增。目前微博用户兴趣挖掘方法大多停留在研究用户浏览网页时点击行为、用户所发微博内容或所在社区等表象层面,尚未深入到微博用户使用特性层面。从用户微博内容出发,结合用户关注对象微博,提出一种改进作者主题模型UF_AT(users focus-author topic)。最后对真实数据进行实验得出,模型在用户兴趣主题以及主题词概率值上均高于AT模型,而且用户兴趣主题准确、全面,同时验证了UF_AT模型在挖掘用户兴趣中的有效性。 Mieroblog as a mainstream social networking sites, the information is increasing by the explosive growth. Currently the methods of mieroblog user interest mining most remain in the level such as appearance of the research Of clicking action when the user browsing websites, the microblog content user post or the community they belong, yet in-depth features to microblog user level. From the content of users posting , combined with the focused users' microblog, this paper proposed an improved AT model UF_AT. At last the experiments on the real data show that the probability values of user' interest topics and the words on the topics of the model are higher than the AT model, and the users' interest topics are accuracy, entirety and verify the effective of the UFAT model on mining user' interest.
出处 《计算机应用研究》 CSCD 北大核心 2015年第7期1982-1985,共4页 Application Research of Computers
基金 国家自然科学基金资助项目(60903082) 辽宁省教育厅资助项目(L2012113)
关键词 微博 用户关注特性 作者主题模型 兴趣挖掘 microblog user focus features author topic model interest minning
  • 相关文献

参考文献16

二级参考文献149

  • 1周涛,傅忠谦,牛永伟,王达,曾燕,汪秉宏,周佩玲.复杂网络上传播动力学研究综述[J].自然科学进展,2005,15(5):513-518. 被引量:72
  • 2吴江宁,王桂才.文本聚类分析结果可视化方法研究[J].情报学报,2011,30(2):115-120. 被引量:7
  • 3王永恒,贾焰,杨树强.基于频繁词集聚类的海量短文分类方法[J].计算机工程与设计,2007,28(8):1744-1746. 被引量:6
  • 4王永恒,贾焰,杨树强.海量短语信息文本聚类技术研究[J].计算机工程,2007,33(14):38-40. 被引量:13
  • 5Kang J H, Lerman K, Plangprasopchok A. Analyzing Microblogs with affinity propagation [C] //Proc of the 1st KDD Workshop on Social Media Analytic. New York: ACM, 2010:67-70.
  • 6Ramage D, Dumais S, Liebling D. Characterizing microblogs with topic models [C] //Proc of Int AAAI Conf on Weblogs and Social Media. Menlo Park, CA: AAAI, 2010:130-137.
  • 7Xu R, Wunsch D. Survey of clustering algorithms [J]. IEEE Trans on Neural Networks, 2005, 16(3): 645-678.
  • 8Deerwester S, Dumais S, Landauer T, et al. Indexing by latent semantic analysis [J]. Journal of the American Society of Information Science, 1990, 41(6): 391-407.
  • 9Landauer T K, Foltz P W, Laham D. Introduction to Latent Semantic Analysis [J]. Discourse Processes, 1998, 25 (2) 259-284.
  • 10Griffiths T, Steyvers M. Probabilistic topic models [G] // Latent Semantic Analysis: A Road to Meaning. Hillsdale, NJ: Laurence Erlbaum, 2006.

共引文献395

同被引文献37

引证文献5

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部