期刊文献+

分车型的高速公路短时交通流量预测方法研究 被引量:15

Research on forecast method of short-term freeway mixed traffic flow
下载PDF
导出
摘要 针对混合交通流中车辆类型的不确定性和随机性,导致了直接对总车流量进行预测时难以获得较高的预测精度问题,提出一种分车型的流量预测方法。依据各种车型的车流量变化规律不同的特点,选用改进的时间序列算法对大型车和拖挂车的流量进行预测,选用二次指数平滑法对小客车和中型车的流量进行预测;然后通过车辆折算系数将各车型的流量预测值进行加权求和,从而得到总车流量预测值;最后利用渝武高速公路上微波车检器的实测数据对提出的预测方法进行了实验验证,并与非参数回归预测方法和卡尔曼滤波预测方法进行了对比。实验结果表明,无论在工作日还是节假日,分车型的流量预测方法均具有更高的预测精度,该结果为进一步提高高速公路管控能力建立了基础。 Mixed traffic flows behave uncertainty and random feature, which lead to traditional forecast method has low prediction precision. This paper proposed a new multi-type vehicles forecast method of the short-term freeway traffic flow. Based on the change law of traffic flow of the various type vehicles was different, it used improved time series method to forecast the flow value of large type car and trailer, and used second exponential smoothing method to forecast the flow value of small type car and middle type car, then obtained the prediction value of the mixed traffic flow by weight average method on the basic of vehicle conversion factor. Finally, compared with nonparametric regression model and traditional time series model, the results of experiment shows that the new method can increase the forecasting accuracy of short-term freeway traffic flow on weekdays or holidays, and the results can supply the foundation to further improve the ability of highway management and control.
出处 《计算机应用研究》 CSCD 北大核心 2015年第7期1996-1999,共4页 Application Research of Computers
基金 中国工程院重点咨询项目(2012-ZX-22) 重庆市自然科学基金重点资助项目(cstc2012jj B40002) 国家教育部博士点基金资助项目(20120191110047) 重庆市教委科学技术研究项目(KJ1403208 KJ1403209)
关键词 交通流 短时预测 分车型 时间序列 二次指数平滑 traffic flow short-time prediction multi-type vehicle time series method second exponential smoothing method
  • 相关文献

参考文献14

  • 1许岩岩,翟希,孔庆杰,刘允才.高速路交通流短时预测方法[J].交通运输工程学报,2013,13(2):114-119. 被引量:16
  • 2Chan K Y, Dillon T S, Singh J, et al. Traffic flow forecasting neural networks based on exponential smoothing method [ C ]//Proe of the 6th IEEE International Conference on Industrial Electronics and Ap- plications. 2011:376-381.
  • 3Abdi J, Moshiri B, Abdulhai B, et al. Forecasting of short-term traf- fic-flow based on improved neurofuzzy models via emotional temporal difference learning algorithm[ J]. Engineering Applications of Arti- ficial Intelligence, 2012, 25 (5) : 1022-1042.
  • 4Ghosh B, Basu B, O'Mahony M. Multivariate short-term traffic flow forecasting using time-series analysis[ J]. IEEE Trans on Intelligent Transportation Systems, 2009,10 (2) :246- 254.
  • 5Lu Baichuan, Huang Meiling. Traffic flow prediction based on wavelet analysis, genetic algorithm and artificial neural network[ C]//Proc of International Conference on Information Engineering and Computer Science. 2009 : 1 - 4.
  • 6Liu Yuanlin, Hu Wusheng, Xin Shujie, et al. Short-term traffic flow prediction based on genetic BP neural network[ C] //Proc of the 10th International Conference of Chinese Transportation Professionals-Inte- grated Transportation Systems. 2010 : 1835-1843.
  • 7Castro-Nero M, Jeong Y S, Jeong M K, et al. Online-SVR for Short- term traffic flow prediction under typical and atypical traffic conditions [J]. Expert Systems with Applications, 2009, 36 (3) : 6164- 6173.
  • 8姚琛,罗霞,汉克.范少伦.基于粗集和神经网络耦合的短时交通流预测[J].公路交通科技,2010,27(11):104-107. 被引量:7
  • 9谭满春,冯荦斌,徐建闽.基于ARIMA与人工神经网络组合模型的交通流预测[J].中国公路学报,2007,20(4):118-121. 被引量:68
  • 10徐今强,刘智勇.交通流的时间序列建模及预测[J].五邑大学学报(自然科学版),2004,18(3):16-20. 被引量:10

二级参考文献56

共引文献162

同被引文献104

引证文献15

二级引证文献69

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部