期刊文献+

量子程序中一种改进的延时估计算法研究

Research on improved latency estimation algorithm in quantum program
下载PDF
导出
摘要 针对现有的量子算法处理时间长、成本过于昂贵这一不足,提出一种延时快速估计算法LEQA,以评估映射到瓦片量子结构的量子算法的延时。该算法使用程序化方法,通过计算量子周围相邻量子的数量来计算算法的延时。仿真结果表明,对中等规模的电路,LEQA的速度要比执行细致的布局、调度以及将量子运算依赖图中的量子指令和量子位通过路由传输到量子结构中的现代量子映射器速度快出两个数量级。此外,LEQA还能快速得出电路延时的估计,且精度很高,平均误差只有2.11%。 Aiming at the disadvantages of the processing time was too long and the cost was too high in existing quantum algorithms, this paper proposed a fast delay estimation algorithm named LEQA to assess the latency of the quantum algorithms, which were mapped to tile quantum structure. The algorithm used a procedural method. It counted the latency of the algorithm by calculating the number of adjacent quantum. Simulation results show that, for medium-sized circuits, the speed of LEQA was two orders of magnitude faster than that of modern quantum mapper, which performed detailed layout, scheduling and transmits quantum instructions, which was existing in the dependency graph of quantum computing, and qubit to the quantum structure by routing. In addition, LEQA can produce quick estimates of the circuit latency with sufficient accuracy, and the average error is only 2.11%.
出处 《计算机应用研究》 CSCD 北大核心 2015年第7期2018-2022,共5页 Application Research of Computers
基金 四川省教育厅自然科学一般项目(15ZB0332) 四川省教育厅自然科学重点项目(14ZA0295)
关键词 量子算法 延时 调度 映射器 平均误差 quantum algorithm latency scheduling mapper average error
  • 相关文献

参考文献16

  • 1Xu Liu, Mellor-Crummey J. Pinpointing data locality bottlenecks with low overhead [ C ]//Proc of IEEE International Symposium on Per- formance Analysis of Systems and Software. [ S. h ] : IEEE Press, 2013 : 183-193.
  • 2Haase J, Molina J M, Dietrich D. Power-aware system design of wire- less sensor networks:power estimation and power profiling strategies [J]. IEEE Trans on Industrial Informatics, 2011,7(4):601-613.
  • 3张毅,卢凯,高颖慧.量子算法与量子衍生算法[J].计算机学报,2013,36(9):1835-1842. 被引量:21
  • 4许川佩,董平,关鉴.改进量子算法的片上网络映射研究[J].计算机工程与应用,2011,47(1):70-73. 被引量:4
  • 5Nielsen M A, Chuang I L. Quantum computation and quantum infor- mation [ M ]. The United Kingdom: Cambridge University Press, 2000.
  • 6Saeedi M,, Markov I L. Synthesis and optimization of reversible cir- cuits--a survey [ J ]. ACM Computing Surveys, 2013, 45 (2) : 21-29.
  • 7Shende V V, Prasad A K, Markov I L, et al. Synthesis of reversible logic circuits [ J]. IEEE Trans on Computer-Aided Design of In- tegrated Circuits and Systems, 2003, 22(6) :710-722.
  • 8Whitney M G, Isailovic N, Patel Y, et al. A fault tolerant, area effi- cient architecture for Shor's factoring algorithm [ J ]. ACM SI- GARCH Computer Architecture News, 2009, 37 (3) :383- 394.
  • 9Thaker D .D, Metodi T S, Cross A W, et al. Quantum memory hierar- chies : efficient designs to match available parallelism in quantum com- puting [ J ]. ACM SIGARCH Computer Architecture NewS, 2006, 34(2) :3?8-390.
  • 10Kreger-Stickles L, Oskin M. Microcoded architectures for ion-tap quantum computers [ J]. ACM SIGARCH Computer Architecture News, 2008, 36(3):165-176.

二级参考文献10

共引文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部