期刊文献+

基于曲线拟合和SVM的眼动信号分类算法研究

Research on classification algorithm of eye movements signals based on curve fitting and SVM
下载PDF
导出
摘要 为提高基于EOG的眼动信号分类算法精度,改进基于EOG的人—机交互系统性能,提出了一种基于曲线拟合(curve fitting)与支持向量机(SVM)的眼动信号分类算法(CF-SVM),并设计了新的实验范式,增加了"扫视保持"环节。该算法采用曲线拟合方法进行特征提取,在此基础上,使用SVM分类器对眼动信号进行分类。实验室环境下,对9名眼部活动正常的受试者进行了眼动数据采集与识别,CF-SVM算法的平均分类准确率达到98.3%,与其他几种眼动识别方法相比较,其平均正确率分别提升了9.4%、5.9%、1.0%。实验结果表明,CF-SVM算法在眼动信号识别中表现了良好的性能,具有高的分类精度和鲁棒性。 To improve the classification accuracy of eye movement signals and the performance of the BCI system based on EOG signals, this paper proposed a classification algorithm of eye movement signals based on curve fitting and support vector machine ( CF-SVM), and increased a new experimental paradigm named "saccades keeping". It applied a curve fitting method to extract feature parameters of eye movement signals, on this basis, classified the EOG signals using SVM classifier. In laboratory environment, the experimental data contained eye movements of 9 normal subjects, and the average classification accuracy of CF-SVM algorithm achieved 98.3%, increased 9.4%, 5.9% and 1.0% respectively compared with other identification methods. Experimental results reveal that the CF-SVM algorithm has high classification accuracy and good robustness in EOG signal identification.
出处 《计算机应用研究》 CSCD 北大核心 2015年第7期2101-2104,2111,共5页 Application Research of Computers
基金 国家自然科学基金资助项目(61271352) 计算智能与信号处理教育部重点实验室开放基金资助项目 安徽省教育厅自然科学基金资助项目(KJ2013B285 KJ2012Z400 KJ2012Z401 KJ2012A263)
关键词 人机交互 眼电图 实验范式 曲线拟合 支持向量机 human-computer interface eleetrooculogram experimental paradigm curve fitting support vector machine(SVM)
  • 相关文献

参考文献16

  • 1Murguialday A R, Hill J, Bensch M, et al. Transition from the locked- in to the completely locked-in state: a physiological analysis [ J]. Clin N eu rophysiol, 2011,122 ( 5 ) : 925 - 933.
  • 2吴小培,宋俊可,郭晓静,巩笑晓.基于滑动窗独立分量分析的在线包络检测新方法及其在脑-机接口中的应用[J].生物物理学报,2012,28(11):896-909. 被引量:2
  • 3Postelnicu C C, Girbacia F, Talaba D. EOG-based visual navigation interface development [ J ]. Expert Systems with Applications, 2012,39(12) :10857-10866.
  • 4Gu J J, Meng M, Cook A, et al. A study of natural eye movement detection and ocular implant movement control using processed EOG signals [ C ]//Proc of IEEE Conferences on Robotics & Automation. 2001 : 1555-1560.
  • 5Jones L A. Systematic review of alcohol screening tools for use in the emergency department [ J]. Emergency Medicine Journal ,2011,28 (3) :182-191.
  • 6Roche D J O, King A C. Alcohol impairment of saccadic and smooth pursuit eye movements: impact of risk factors for alcohol dependence [J]. Psychopharmacology,2010,212(1:33-44.
  • 7Arden G B, Constable P A. The electro-oculogram[ J]. Progress in Retinal and Eye Research,2006,25(2) :207-248.
  • 8Deng L Y, Hsu C L, Lin T C, et al. EOG-based human-computer in-terface system development[ J]. Expert Systems with Applications, 2010,37(4) :333?-3343.
  • 9Barea R, Boquete L, Ortega S, et al. EOG-based eye movements codification for human computer interaction [ J ]. Expert Systems with Applications,2012,39(3) :2677-2683.
  • 10Usakli A B, Gurkan S. Design of a novel efficient human-computer interface: an electrooculagram based virtual keyboard [ J]. IEEE lrans on Instrumentation and Measurement,2010,59(8) :2099- 2108.

二级参考文献24

  • 1Vidal JJ. Toward direct brain-computer communication. Annu Revi Biophys Bioeng, 1973, 2:157~180.
  • 2Rao R, Scherer R. Brain-computer interfacing [in the spotlight]. IEEE Signal Proc Mag, 2010, 27(4): 152-150.
  • 3Herman P, Prasad G, McGinnity TM. Comparative analysis of spectral approaches to feature extraction for EEG-based motor imagery classification. IEEE Trans Neural Sys Rehab Engin, 2008, 16(4): 317~326.
  • 4Park C, Looney D, Kidmose P. Time-frequency analysis of EEG asymmetry using bivariate empirical mode decomposition. IEEE Trans Neural Sys Reh, 2011, 19(4): 366-373.
  • 5Pfurtscheller G, Neuper C, Schlogl A. Separability of EEG signals recorded during right and left motor imagery using adaptive autoregressive parameters. IEEE Trans Neur SysReh, 1998, 6(3): 316~325.
  • 6Cecotti H, Graser A. Convolutional neural networks for P300 detection with application to brain-computer interfaces. IEEE Trans Pattern Anal Mach Intell, 2011, 33(3): 433-445.
  • 7Thomas KP, Guan C, Lau CT. A new discriminative common spatial pattern method for motor imagery brain-computer interfaces. IEEE Trans Biomed Engine, 2009, 56(11-2): 2730-2733.
  • 8Lee H, Choi S. PCA-based linear dynamical systems for multichannel EEG classification. Proceedings of the 9th International Conference on Neural Information Processing, 2002, 2:745-749.
  • 9Makeig S, Enghoff S, Jung TP, Sejnowski TJ. A natural basis for efficient brain-actuated control. ~GEE Trans Rehab Eng, 2000, 8[2): 208-211.
  • 10Gouy-Pailler C, Congedo M, Brunner C. Nonstationary brain source separation for multiclass motor imagery. IEEE Trans Biomed Engin, 2010, 57(2): 469-478.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部