期刊文献+

基于贝叶斯预测密度的弱匹配追踪频谱检测 被引量:1

Spectrum detection algorithm using weak matching pursuit based on Bayesian predictive densities
下载PDF
导出
摘要 针对在低信噪比、观测点数较少情况下稀疏度的欠估计问题,提出了一种基于贝叶斯预测密度的弱匹配追踪频谱检测算法。该算法利用贝叶斯预测密度理论推导出罚函数,然后引入弱匹配策略于Co Sa MP算法,提高频谱支撑集估计性能,且减弱受稀疏度估计准确度的影响。仿真结果表明,当信噪比高于3 d B时,利用400个观测样本该算法就能获得90%以上的频谱检测概率,宽带频谱感知性能优于已有算法。 To solve the problem of under-estimation of sparsity using a few of observation data with low signal to noise ratio, this paper proposed a spectrum detection algorithm using weak matching pursuit based on Bayesian predictive densities. Firstly, the algorithm derived a penalty function by applying Bayesian predictive densities. Then, it applied the weak matching strategy to the algorithm of CoSaMP, which could enhance the estimation performance of spectrum support set and reduce the influence of estimation error of sparsity. Simulation results show that the proposed algorithm has better performance than other algorithms, as the detection probably of proposed algorithm can be more than 90% when the SNR is higher than 3 dB.
出处 《计算机应用研究》 CSCD 北大核心 2015年第7期2119-2122,共4页 Application Research of Computers
基金 电科院预研基金资助项目(41101040102) 浙江省研究生创新科技项目(YK2011062)
关键词 宽带频谱感知 贝叶斯预测密度 稀疏度 弱匹配追踪 wideband spectrum sensing Bayesian predictive densities sparsity weak matching pursuit
  • 相关文献

参考文献16

二级参考文献152

  • 1张杰,廖桂生,王珏.对角加载对信号源数检测性能的改善[J].电子学报,2004,32(12):2094-2097. 被引量:30
  • 2张春梅,尹忠科,肖明霞.基于冗余字典的信号超完备表示与稀疏分解[J].科学通报,2006,51(6):628-633. 被引量:71
  • 3R Baraniuk.A lecture on compressive sensing[J].IEEE Signal Processing Magazine,2007,24(4):118-121.
  • 4Guangming Shi,Jie Lin,Xuyang Chen,Fei Qi,Danhua Liu and Li Zhang.UWB echo signal detection with ultra low rate sampling based on compressed sensing[J].IEEE Trans.On Circuits and Systems-Ⅱ:Express Briefs,2008,55(4):379-383.
  • 5Cand,S E J.Ridgelets:theory and applications[I)].Stanford.Stanford University.1998.
  • 6E Candès,D L Donoho.Curvelets[R].USA:Department of Statistics,Stanford University.1999.
  • 7E L Pennec,S Mallat.Image compression with geometrical wavelets[A].Proc.of IEEE International Conference on Image Processing,ICIP'2000[C].Vancouver,BC:IEEE Computer Society,2000.1:661-664.
  • 8Do,Minh N,Vetterli,Martin.Contourlets:A new directional multiresolution image representation[A].Conference Record of the Asilomar Conference on Signals,Systems and Computers[C].Pacific Groove,CA,United States:IEEE Computer Society.2002.1:497-501.
  • 9G Peyré.Best Basis compressed sensing[J].Lecture Notes in Ccmputer Science,2007,4485:80-91.
  • 10V Temlyakov.Nonlinear Methods of Approximation[R].IMI Research Reports,Dept of Mathematics,University of South Carolina.2001.01-09.

共引文献738

同被引文献13

  • 1SUN H, NALLANATHAN A, WANG C, et al. Wideband spectrum sensing for cognitive radio networks: a survey [J]. IEEE wireless communications, 2013, 20(2): 74-81.
  • 2DONOHO D L. Compressed sensing [J]. IEEE transactions on information theory, 2006, 52(4): 1289-1306.
  • 3ZHI T, GIANNAKIS G B. Compressed sensing for wideband cognitive radios [C]// Proceedings of the 2007 IEEE International Conference on Acoustics, Speech and Signal Processing. Piscataway, NJ: IEEE, 2007: 1357-1360.
  • 4MISHALI M, ELDAR Y C. From theory to practice: sub-Nyquist sampling of sparse wideband analog signals [J]. IEEE journal of selected topics in signal processing, 2010, 4(2): 375-391.
  • 5ZHANG Z, LI H, YANG D, et al. Space-time Bayesian compressed spectrum sensing for wideband cognitive radio networks [C]// Proceedings of the 2010 IEEE Symposium on New Frontiers in Dynamic Spectrum. Piscataway, NJ: IEEE, 2010: 1-11.
  • 6WU H, YANG J, CHEN F. Source number estimators using transformed Gerschgorin radii [J]. IEEE transactions on signal processing, 1995, 43(6): 1325-1333.
  • 7RASHIDI M, HAGHIGHI K, OWRANG A, et al. A wideband spectrum sensing method for cognitive radio using sub-Nyquist sampling [C]// Proceedings of the 2011 IEEE Digital Signal Processing Workshop and IEEE Signal Processing Education Workshop. Piscataway, NJ: IEEE, 2011: 30-35.
  • 8CAI T T, LIE W. Orthogonal matching pursuit for sparse signal recovery with noise [J]. IEEE transactions on information theory, 2011, 57(7): 4680-4688.
  • 9MISHALI M, ELDAR Y C. Reduce and boost: recovering arbitrary sets of jointly sparse vectors [J]. IEEE transactions on signal processing, 2008, 56(10): 4692-4702.
  • 10张平平,伍俊良,胡兴凯.Gerschgorin圆盘的分离[J].西南师范大学学报(自然科学版),2011,36(3):1-3. 被引量:7

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部