期刊文献+

基于相变蓄热和热电转换的低品位热能热/电联合回收实验研究 被引量:1

EXPERIMENTAL STUDY ON LOW-GRADE HEAT RECOVERY METHOD USING LHTES AND TEG FOR COMBINATION GENERATION OF THERMAL AND ELECTRICAL ENERGIES
下载PDF
导出
摘要 针对低品位热能回收,提出一种采用相变蓄热及热电转换技术以实现热能,电能联合回收利用的新方法,回收的热能用于加热连续供给的冷媒水并同时发电。搭建实验系统对其热/电回收性能进行实验研究,结果表明:综合相变材料(PCM)温度及温差变化曲线可较好地反映出系统的相变蓄热规律,冷媒水温升及热电转换量明显且存在由PCM相变效应引起的平稳变化段,占PCM主要相变阶段的16.7%。增加冷媒水流量及热电转换单元(TEM)数量会降低冷媒水温升、提高热电转换量。冷媒水流量、热源输入功率和TEM数量为影响热/电回收性能及蓄、放热时间比的主要因素。间歇性蓄、放热循环实验中冷媒水温升和热电回收功率分别稳定在6—13℃和0.020-0.085W,显示该文提出的热回收方法对间歇性热能回收具有较好的稳定性。 A hybrid low-grade heat recovery method using latent heat thermal energy storage (LHTES) and thermoelectric generation (TEG) for combination generation of thermal and electrical energies was studied, in which the recovered heat was purposely absorbed by continuously supplied cooling water and converted into electrical energy at the same time. The experiments were done to study the thermal and electrical output characteristics and the related influencing factors. The experimental results show that combination of temperature and temperature difference variations of phase change material (PCM) can reveal the phase change heat storage phenomena well. The temperature rise of cooling water and converted thermoelectric power are significant, and there exist moderate sections caused by the phase change effect of PCM, which take 16.7% of the main phase change period of PCM. Increasing the flow rate of cooling water and thermoelectric module (TEM) quantity can decrease the temperature rise of cooling water and enhance thermoelectric power. The flow rate of cooling water, input power of heat source and TEM quantity are main factors influencing thermal and electrical output performances, ratio of heat storage duration to heat release duration. The results of intermittent heat storage and release experiments show that the temperature rise of cooling water and thermoelectric power vary within 6 -13 ℃ and 0.02 -0.085 W, respectively during six-cycle periods, which demonstrates the stability of the hybrid waste heat recovery method for intermittent heat source.
出处 《太阳能学报》 EI CAS CSCD 北大核心 2015年第6期1318-1324,共7页 Acta Energiae Solaris Sinica
基金 国家重点基础研究发展(973)计划(2012CB720404) 国家杰出青年科学基金(50925624)
关键词 相变蓄热 热电转换 热回收 低品位 冷媒 间歇性 latent heat thermal energy storage (LHTES) thermoelectric generation (TEG) heat recovery low-grade cooling medium intermittency
  • 相关文献

参考文献13

  • 1范亚云,夏朝凤,李军凯,韦小岿,宋洪川.热泵技术在太阳能利用中的实验研究[J].太阳能学报,2002,23(5):580-585. 被引量:23
  • 2Si M, Thompson S, Calder K. Energy efficiency assessment by process heating assessment and survey tool (PHAST) and feasibility analysis of waste heat recovery in the reheat furnace at a steel company[J]. Renewable and Sustainable Energy Reviews, 2011, 15 (6) : 2904-2908.
  • 3Zhou Dan, Zhao Changying, Tian Yuan. Review on thermal energy storage with phase change materials (PCMs) in building applications [J]. Applied Energy, 2012, 92: 593-605.
  • 4姜益强,齐琦,姚杨,马最良.圆柱形壳管式相变蓄热单元的蓄热特性研究[J].太阳能学报,2008,29(1):29-34. 被引量:13
  • 5Zhao Changying, Lu Wei, Tian Yuan, Heat transfer enhancement for thermal energy storage using metal foams embedded within phase change materials (PCMs) [J]. Solar Energy, 2010, 84(8) : 1402-1412.
  • 6崔海亭,王振辉,郭彦书,彭培英,胡禄.圆柱形相变蓄热器蓄/放热性能实验研究[J].太阳能学报,2009,30(10):1368-1372. 被引量:29
  • 7Kim S K, Won B C, Rhi S H, et al. Thermoelectric power generation system for future hybrid vehicles using hot exhaust gas[J]. Journal of Electronic Materials, 2011, 40(5) : 778-783.
  • 8Hsu C T, Huang G Y, Chu H S, et al. Experiments and simulations on low-temperature waste heat harvesting system by thermoelectric power generators [J]. Applied Energy, 2011, 88(4) : 1291-1297.
  • 9Wang Xiaoqun, Xu Jun, Zhang Fang, et al. Phase change materials at the cold/hot sides of thermoelectric cooler for temperature control [ A ]. Proceedings of SPIE Conference on Smart Materials and Nanoteehnology in Engineering[C], Harbin, China, 2007.
  • 10Xu Min, Zhang Ling, Liu Zhongbin, et al. Experimental study on a new-type thermoelectric heat pump phase change thermal energy storage device[A]. Proceedings of 2011 IEEE International Conference on Computer Distributed Control and Intelligent Environmental Monitoring[C], Changsha, China, 2011.

二级参考文献18

  • 1陈超,蹇瑞欢,焦庆影,夏定国,李香玲.新型定形板状相变材料的蓄/放热特性[J].太阳能学报,2005,26(6):857-862. 被引量:13
  • 2胡军,董华,周恩泽,杨卫波.螺旋盘管式相变储热单元储热性能[J].太阳能学报,2006,27(4):399-403. 被引量:11
  • 3Koca Ahmet, Oztop Hakan F, Koyun Tansel. Energy and exergy analysis of a latent heat storage system with phase change material for a solar collector[J].Renewable Energy, 2008, 3 (4) : 567--574.
  • 4Kenisarin Murat, Mahkamov Khamid. Solar energy storage using phase change materials [J].Renewable Energy, 2007, 11(9) : 1913--1965.
  • 5Dhifaoui B, Ben Jabrallah S, Belghith A. Experimental study of the dynamic behaviour of a porous medium submitted to a wall heat flux in view of thermal energy storage by sensible heat[J]. Intemational Journal of Thermal Sciences, 2007, 46 (10): 1056--- 1063.
  • 6Nallusamy N, Sampath S, Velraj R. Experimental investigation on a combined sensible and beat latent storage system integrated with eonstant/varying heat sources [ J ]. Renewable Energy, 2007,32: 1206--1227.
  • 7Vyshak N R, Jilani G. Numerical analysis of latent heat thermal energy storage system [J]. Energy Conversion and Management, 2007, 48(7): 2161--2168.
  • 8Zurigat Yousef H, Liche Pedro R, Ghajar Afshin J. Influence of inlet geometry on mixing in thermal-cline thermal energy storage[J]. IntJ Heat Mass Transfer, 1991, 34(1): 115-- 125.
  • 9旷玉辉,张开黎,于立强等.太阳能热泵系统(SAHP)的热力学综析[C].中国建筑学会建筑动力分会年会论集,131-137.
  • 10[英]史蒂文.维.索克莱著.陈成木等译.太阳能与建筑[M].北京:中国建筑工业出版社,1983,44-46.

共引文献62

同被引文献13

引证文献1

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部