期刊文献+

电沉积Cu/Zn金属预制层后续低硒压硒化制备CZTSe薄膜 被引量:1

CZTSe THIN FILM PREPARED BY LOW PRESSURE SELENIZATION ON ELECTRODEPOSITED Cu/Zn METAL LAYER
下载PDF
导出
摘要 在玻璃/Mo衬底上采用恒电流顺序电沉积Cu-Zn金属预制层,后续在SnSe_x(x=1,2)气氛较低硒压条件下硒化制备CZTSe薄膜。SnSe_x(x=1,2)分压由Sn源温度控制,Se分压由Se源温度控制,Se源及样品温度分别为270℃和570℃。采用3种不同的硒化处理工艺对金属预制层进行硒化处理。通过SEM及EDS表征CZTSe薄膜的结构、形貌及成分。综合SEM及EDS测试结果,确定CZTSe和Mo界面处MoSe_2相很薄。实验发现较低SnSe_x(x=1,2)气氛条件下可实现高温低Se压硒化CuZn预制层制备单相CZTSe薄膜,经工艺优化得到效率为7.6%的CZTSe太阳电池。 Cu/Zn metal layer was deposited on glass/Mo substrate by constant current electrodeposition method, then CZTSe thin film was prepared by selenization in SnSex (x=1, 2) atmosphere with low selenium pressure. Se partical pressure in SnSex(x=l, 2) was controlled by the Se temperature, the sample temperature and the Se temperature were 570 ℃ and 270 ℃ , respectively. Three selenization processes were applied, and the structure, morphology and composition of CZTSe thin films were characterized by SEM and EDS. The very thin MoSes layer in interface between CZTSe and Mo was confirmed by SEM and EDS tests. It was found that CZTSe thin films could be prepared by seleniding CuZn metal layer in lower SnSex(x=1, 2) atmosphere with high temperature and low selenium pressure, CZTSe thin film solar cell with 7.6% of efficiency was prepared by the optimization process.
出处 《太阳能学报》 EI CAS CSCD 北大核心 2015年第6期1528-1532,共5页 Acta Energiae Solaris Sinica
基金 广东省科技计划(2012A032300009)
关键词 CZTSe 电沉积 低硒压硒化 金属预制层 CZTSe electrodeposition selenylation in low selenium pressure metal layer
  • 相关文献

参考文献15

  • 1Wadia C, Alisatos A P, Kammen D M. Materials availability expands the opportunity for large-scale photovoltaics deployment [J]. Environmental Science & Technology, 2009, 43(6): 2072-2077.
  • 2Peter L M. Towards sustainable photovohaics: The search for new materials [J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2011, 369( 1942): 1840-1856.
  • 3Wang Wei, Winkler Mark T, Gunawan O, et al. Device characteristics of CZTSSe thin-film solar cells with 12.6% efficiency[J]. Advanced Energy Materials, 2014, 4(7): 201301465-1-201301465-5.
  • 4Repins I, Beall C, Vora N, et al. Co-evaporated Cu2ZnSnSe, films and devices[J]. Solar Energy Materials and Solar Cells, 2012, 101: 154-159.
  • 5Shin B, Gunawan O, Zhu Yu, et al. Thin film solar cell with 8.4% power conversion efficiency using an earth-abundant CmZnSnS, absorber[J]. Progress in Photovohaics: Research and Applications, 2013, 21 ( 1 ): 72-76.
  • 6Ki Wooseok, Hillhouse Hugh W. Earth-abundant element photovohaics directly from soluble precursors with high yield using a non-toxic solvent [J]. Advanced Energy Materials, 2011, 1 (5): 732-735.
  • 7Guo Lian, Zhu Yu, Gunawan Oki, et al. Electrodeposited CuZnSnSe, thin film solar cell with 7% power conversion efficiency[J]. Progress in Photovohaics: Research and Applications, 2014, 22( 1): 58-68.
  • 8Jiang Feng, Ikeda Shigeru, Harada Takashi, et al. Pure sulfide Cu~ZnSnS4 thin film solar ceils fabricated by preheating an electrodeposited metallic stack [J]. Advanced Energy Materials, 2014, 4(7): 1301381.
  • 9Ranlot J M, Domain C, Guillemoles J F. Ab initio investigation of potential indium and gallium free chalcopyrite compounds for photovohaic application [J]. Journal of Physics and Chemistry of Solids, 2005, 66 ( 11 ): 2019-2023.
  • 10Seol Jae-Seung, Lee Sang-Yul, Lee Jae-Choon, et al. Electrical and optical properties of Cu2ZnSnS4 thin films prepared by RF magnetron sputtering process [J]. Solar Energy Materials and Solar Cells, 2003, 75 (1-2): 155-162.

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部