摘要
计算动词元胞网络是一种以计算动词规则为局部进化规则的新型元胞计算框架。在之前的研究中,已经从中观察到大量模式,例如条纹图形(单色、多色、错位等)、迷宫图形、棋盘格图形、网格图形、斑块图形、复合图形、同质图形、图灵斑图、游动的鱼、波传图等。实验数据表明,计算动词元胞网络有极大的潜力成为又一个通用的模型形成工具。然而这些分类方式往往是根据人眼的直观感受进行,因而缺乏系统性的分析。本文通过大量实验数据对一个特定动词规则矩阵下形成的模式进行统计分析,实验的粒度达到0.2,一共进行1000000次实验。结果表明,同质模式出现的概率为64.23%,整体的空间频率分布集中在最低频区域和3个最高频区域附近。
Computational verb cellular network(CVCN) is a new computational cellular framework based on computational verb local rules. Previous works present varieties of patterns formed in CVCN and made classifications,such as stripe pattern(flip-flop,multi-color stripe,dislocation stripe),maze pattern,checkerboard pattern,grid pattern,patch pattern,composite pattern,homogenous pattern,turing pattern,swimming fish pattern,wave propagation pattern and so on. Experiments show that CVCN has the potential to be another universal pattern formation tools. However,previous classification heavily relies on human observation and the coverage of parameters space is too limited. To cover these leaks,this paper presents a systematic study on CVCN with a specific verb rule matrix. The granularity reaches 0. 2 and 1000000 experiments are conducted. From the experiments result,homogenous pattern is formed on64. 23%. Amplitude concentrated on the four extreme points of the accumulated spectral distribution.
出处
《长春师范大学学报》
2015年第4期30-34,共5页
Journal of Changchun Normal University
关键词
计算动词元胞网络
计算动词
模式形成
元胞自动机
computational verb cellular networks
computational verb
pattern formation
cellular automaton