摘要
研究了带双参数的脉冲泛函微分方程u'(t)=h(t,u(t))-λf(t,u(t-τ(t))),t∈R,t≠tk,u(t+k)-u(tk)=μIk(tk,u(tk-τ(tk)))正周期解的存在性,其中λ>0,μ≥0为参数,获得了其在更一般条件下正周期解的存在性结果。主要结果的证明基于不动点指数理论。
We study the existence of positive periodic solutions of impulsive functional differential equations with two parameters u'(t)=h(t,u(t))-λf(t,u(t-τ(t))),t∈R,t≠tk,u(t+k)-u(tk)=μIk(tk,u(tk-τ(tk))),where λ〉0,μ≥0 are parameters and show the existence results of positive periodic solutions in more general condi- tions. The proof of the main results is based on the fixed point index theory.
出处
《山东大学学报(理学版)》
CAS
CSCD
北大核心
2015年第6期69-74,82,共7页
Journal of Shandong University(Natural Science)
基金
国家自然科学基金资助项目(11361054)
甘肃省自然科学基金资助项目(1208RJZA258)
关键词
脉冲泛函微分方程
双参数
正周期解
不动点指数
Impulsive functional differential equations
two parameters
positive periodic solutions
fixed point index