期刊文献+

带双参数的脉冲泛函微分方程正周期解的存在性

Existence of positive periodic solutions of impulsive functional differential equations with two parameters
原文传递
导出
摘要 研究了带双参数的脉冲泛函微分方程u'(t)=h(t,u(t))-λf(t,u(t-τ(t))),t∈R,t≠tk,u(t+k)-u(tk)=μIk(tk,u(tk-τ(tk)))正周期解的存在性,其中λ>0,μ≥0为参数,获得了其在更一般条件下正周期解的存在性结果。主要结果的证明基于不动点指数理论。 We study the existence of positive periodic solutions of impulsive functional differential equations with two parameters u'(t)=h(t,u(t))-λf(t,u(t-τ(t))),t∈R,t≠tk,u(t+k)-u(tk)=μIk(tk,u(tk-τ(tk))),where λ〉0,μ≥0 are parameters and show the existence results of positive periodic solutions in more general condi- tions. The proof of the main results is based on the fixed point index theory.
作者 徐嫚
出处 《山东大学学报(理学版)》 CAS CSCD 北大核心 2015年第6期69-74,82,共7页 Journal of Shandong University(Natural Science)
基金 国家自然科学基金资助项目(11361054) 甘肃省自然科学基金资助项目(1208RJZA258)
关键词 脉冲泛函微分方程 双参数 正周期解 不动点指数 Impulsive functional differential equations two parameters positive periodic solutions fixed point index
  • 相关文献

参考文献18

  • 1LI Wantong, HUO Haifeng. Existence and global attractivity of positive periodic solutions of functional differential equations with impulses[ J ]. Nonlinear Analysis, 2004, 59 ( 6 ) : 857-877.
  • 2CHOISY M, GUEGAN J F, ROHANI P. Dynamics of infectious diseases and pulse vaccination:teasing apart the embedded resonance effects[ J]. Physica D, 2006, 223( 1 ) :26-35.
  • 3DONOFRIO A. On pulse vaccination strategy in the SIR epidemic model with vertical transmission [ J ]. Appl Math Lett, 2005, 18(7) :729-732.
  • 4GAO Shujing, CHEN Lansun, NIETO J J, et al. Analysis of a delayed epidemic model with pulse vaccination and saturation incidence [J ]. Vaccine, 2006, 24 (35-36) :6037-6045.
  • 5TANG Sanyi, CHEN Lansun. Density-dependent birth rate, birth pulses and their population dynamic consequences [ J ]. J Math Biol, 2002, 44(2) .. 185-199.
  • 6COOKE K L, KAPLAN J L. A periodicity threshold theorem for epidemic and population growth[J]. Math Biosci, 1976, 31 (1-2) :87-104.
  • 7GOPALSAMY K. Stability and oscillation in delay differential equations of population dynamics [J ]. Dordrecht: Kluwer Aca- demic Publishers Group, 1992.
  • 8BAI Dingyong, XU Yuantong. Periodic solutions of first order functional differential equations with periodic deviations [ J ]. Comput Math Appl, 2007, 53(9) :1361-1366.
  • 9LIU Xilan, LI Wantong. Existence and uniqueness of positive periodic solutions of functional differential equations [ J ]. J Math Anal Appl, 2004, 293( 1 ) :28-39.
  • 10WANG Haiyan. Positive periodic solutions of functional differential equations [J]. Journal Differential Equations, 2004, 202 ( 2 ) : 354-366.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部