期刊文献+

钨锰矿(010)表面电子结构及性质第一性原理计算 被引量:6

Structural and Electronic Properties of MnWO_4 (010) Surface Studied by First-principles calculation
下载PDF
导出
摘要 用基于密度泛函理论的DMol3计算了钨锰矿不同(010)断裂键解理面的结构弛豫、Mulliken电荷布居和表面能,考察不同断裂键方式对表面能及表面电子结构性能的影响。锰钨矿单晶胞中Mn—O键比W—O键离子性强,平均键长更长,键能更小,沿Mn—O键断裂所形成的(010)解理面具有更小表面能,性质更稳定,是钨锰矿的理想(010)解理面。理想钨锰矿(010)解理面电荷密度差和态密度分析结果表明,Mn原子是表面活性原子,由于表面相中Mn—O原子相互作用较体相中增强,表面Mn原子活性降低。第一性原理计算结果能为实际矿石浮选的深入理论研究提供指导和参考。 DMol3 based on density functional theory (DFT)is used to investigated the structural relaxation,Mulliken bond population and surface energy of different huebnerite (MnWO4)(010)cleavage surfaces various in bonds breaking,and the effect of cleavage bonds on surface is studyed. The results show that in huebnerite bulk Mn-O bonds have longer length and less bond energy than W-O bonds. The surface energy of Mn-O bonds breaking (010) surface is less than that of W-O bonds breaking (010)surface. The Mn-O bonds breaking (010)surface which is much stabler is the optimum (010)cleavage surface of huebnerite. Charge density difference maps and projected density of states of atoms in the optimum (010)cleavage surface is also performed. The interaction between Mn and O atoms in surface phase become strong,the activity of Mn atoms decrease. The first-pinciples calculation results can provide guidelines and reference to theory study of huebnerite flotation.
出处 《金属矿山》 CAS 北大核心 2015年第6期52-58,共7页 Metal Mine
基金 国家高技术研究发展计划(863计划)项目(编号:2013AA064102)
关键词 钨锰矿 密度泛函 DMol3 表面能 (010)解理面 Huebnerite ( MnWQ ), Density functional theory ( DFT), DMol^3, Surface energy, ( 010 ) cleavage surface
  • 相关文献

参考文献2

二级参考文献30

  • 1熊小勇,Michelle JACOB-DULERE.铁成分对硫化锌精矿的半导体性质及化学反应性的影响[J].有色金属,1989,41(4):55-67. 被引量:6
  • 2LAAJALEHTO K,KARTIO I,SUONINEN E.XPS and SR-XPS techniques applied to sulphide mineral surfaces[J].International Journal of Mineral Processing,1997,51(1):163-170.
  • 3ROSSO K M,BECKER U,FOCHELLA M E Atomically resolved electronic structure of pyrite {100} surfaces:An experimental and theoretical investigation with implications for reactivity[J].American Mineralogist,1999,84(10):1353-1548.
  • 4CHATURVEDI S,KATZ R,GUEVREMONT J,SCHOONEN M A A,STRONGIN D R.XPS and LEED study of a single-crystal surface of pyrite[J].American Mineralogist,1996,81(1/2):261-264.
  • 5LEIRO J A,MATTILA S S,LAAJALEHTO K.XPS study of the sulphur 2p spectra of pyrite[J].Surface Science,2003,547(1):157-161.
  • 6HUNG A,MUSCAT J,YAROVSDY I,RUSSO S P.Density-functional theory studies of pyrite FeS2 (100) and (110) surfaces[J].Surface Science,2002,513(3):511-524.
  • 7von OERTZEN G U,SKINNER W M,NESBITT H W.Ab initio and XPS studies of pyrite (100) surface states[J].Radiation Physics and Chemistry,2006,75(11):1855-1860.
  • 8CAI J,PHILPOTT M R.Electronic structure of bulk and (001) surface layers of pyrite FeS2[J].Computational Materials Science,2004,30(3/4):358-363.
  • 9EDELBRO R,SANDSTR 0 M A,PAUL J.Full potential calculations on the electron bandstructures of sphalerite,pyrite and chalcopyrite[J].Applied Surface Science,2003,206(1/4):300-313.
  • 10von OERTZEN G U,JONES R T,GERSON A R.Electronic and optical properties of Fe,Zn and Pb sulfides[J].Physics and Chemistry of Minerals,2005,32(4):255-268.

共引文献33

同被引文献41

引证文献6

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部