期刊文献+

露天矿运输卡车柴油消耗的外部影响模型 被引量:9

The External Effects Model of Diesel Consumption of Transport Trucks in Open-pit Mine
下载PDF
导出
摘要 为建立露天矿运输卡车柴油消耗与其主要外部影响因素之间的非线性模型,采用回归型支持向量机(SVR)方法,并以国内某露天煤矿实际生产调度统计的数据作为原始样本,选取产量、运量、运距、高差、装车时间、加油量、岩量等7个主要外部影响指标,使用因子分析方法提取公共因子作为模型的输入,分析柴油消耗模型的训练过程,通过在MATLAB上编写相应程序并进行仿真训练,最终得出基于SVR的柴油消耗模型。训练和测试结果表明:该模型满足精度要求,能够很好地对露天矿运输卡车的柴油消耗进行计算和预测,可以为进行合理的生产调度提供决策支持,同时也为降低柴油消耗提供指导作用。 To establish a nonlinear model between the diesel consumption of transport trucks in open-pit mine and its main external influence factors,the support vector regression ( SVR) method is adopted,and the statistical data of actual pro-duction and dispatcher in a domestic open-pit coal mine are taken as original samples. With selection of output,volume,dis-tance,height,loading time,fuel up amount,rock volume as seven main external indexes,and by using the factor analysis meth-od to extract common factors as the input of the model,the training process of diesel consumption model is analyzed to make the simulation training through programming the corresponding program in MATLAB and finally get the diesel consumption model based on SVR. The training and testing results show that:the model can meet the precision requirement,and work well on the diesel consumption calculation and prediction of transportation truck in open-pit mine;This model can provide decision support for reasonable production schedule and guide to reduce the diesel consumption.
出处 《金属矿山》 CAS 北大核心 2015年第6期118-121,共4页 Metal Mine
基金 国家自然科学基金项目(编号:70971059) 辽宁省教育厅创新团队基金项目(编号:LT2010048)
关键词 露天矿 柴油 支持向量机 运距 高差 Open-pit mine Diesel Support vector machine Transport distance Height difference
  • 相关文献

参考文献9

二级参考文献27

  • 1丁涛,周惠成,黄健辉.混沌水文时间序列区间预测研究[J].水利学报,2004,35(12):15-20. 被引量:30
  • 2夏元友,朱瑞赓,李新平.边坡稳定性研究的综述与展望[J].金属矿山,1995,24(12):9-12. 被引量:29
  • 3尹卫荣.深凹露天矿运输功与台阶高度的关系[J].有色金属(矿山部分),1995,47(2):5-8. 被引量:3
  • 4冯夏庭.智能岩石力学及其在岩土工程中的应用:岩土力学新计算方法讲义[R].武汉:中国科学院武汉岩土力学研究所,1999..
  • 5Vladimir N Vapnik著 张学工译.统计学习理论的本质[M].北京:清华大学出版社,2000..
  • 6边肇祺.模式识别[M].北京:清华大学出版社,1998..
  • 7Hongyu Sun,Chunming Zhang,Bin Ran.Interval prediction for traffic time series using local linear predictor[A].2004IEEE Intelligent Transportation Systems Conference[C].Washington,D.C.,USA:2004,410-415.
  • 8Tay F E H,Lijuan Cao.Application of support vector machines in financial time series forecasting[J].Omega,2001,29:309- 317.
  • 9Gunn S.Support Vector Machines for Classification and Regression[R].Technical Report of University of Southampton,1998.
  • 10Vapnik V N.The Nature of Statistical Learning Theory[M].New York:Springer-Verlag,1995,52 - 123.

共引文献175

同被引文献64

引证文献9

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部