期刊文献+

Morphology control of laser-induced periodic surface structure on the surface of nickel by femtosecond laser 被引量:1

Morphology control of laser-induced periodic surface structure on the surface of nickel by femtosecond laser
原文传递
导出
摘要 An interesting transition between low spatial frequency laser-induced periodic surface structure (LIPSS) and high spatial frequency LIPSS (HSFL) on the surface of aickel is revealed by changing the scanning speed and the laser fluence. The experimental results show the proportion of HSFL area in the overall LIPSS (i.e., K) presents a quasi-parabola function trend with the polarization orientation under a femtoseeond (fs) laser single-pulse train. Moreover, an obvious fluctuation dependence of Kon the pulse delay is observed under a fs laser dual-pulse train. The peak value of the fluctuation is found to be determined by the polarization orientation of the dual-pulse train. An interesting transition between low spatial frequency laser-induced periodic surface structure (LIPSS) and high spatial frequency LIPSS (HSFL) on the surface of aickel is revealed by changing the scanning speed and the laser fluence. The experimental results show the proportion of HSFL area in the overall LIPSS (i.e., K) presents a quasi-parabola function trend with the polarization orientation under a femtoseeond (fs) laser single-pulse train. Moreover, an obvious fluctuation dependence of Kon the pulse delay is observed under a fs laser dual-pulse train. The peak value of the fluctuation is found to be determined by the polarization orientation of the dual-pulse train.
出处 《Chinese Optics Letters》 SCIE EI CAS CSCD 2015年第6期78-82,共5页 中国光学快报(英文版)
基金 supported by the National 973Program of China(No.2011CB013000) the National Natural Science Foundation of China(Nos.91323301 and51322511)
关键词 Laser pulses NICKEL POLARIZATION Surface structure Ultrafast lasers Laser pulses Nickel Polarization Surface structure Ultrafast lasers
  • 相关文献

参考文献35

  • 1A. Y. Vorobyev, V. S. Makin, and C. Guo, J. Appl. Phys. 101, 034903 (2007).
  • 2X. Jia, Y. Yuan, D. Yang, T. Jia, and Z. Sun, Chin. Opt. Lett. 12, 113203 (2014).
  • 3J. Wang and C. Guo, Appl. Phys. Lett. 87, 251914 (2005).
  • 4S. Hshm, A. Rosenfeld, J. Kriiger, and J. Bonse, J. Appl. Phys. 112, 014901 (2012).
  • 5F. Kong, Y. Jin, S. Liu, S. Chen, H. Guan, K. He, Y. Du, and H. He, Chin. Opt. Lett. 11, 102302 (2013).
  • 6J. Li, S. Ho, M. Haque, and P. Herman, Opt. Mater. Express 2, 1562 (2012).
  • 7G. Li, J. Li, Y. Hu, C. Zhang, X. Li, J. Chu, and W. Huang, Appl. Phys. A Mater. Sci. Process. 118, 1189 (2015).
  • 8H. Pan, F. Luo, G. Lin, and Q. Zhao, Chin. Opt. Left. 13, 031404 (2015).
  • 9B. Tan and K. Venkatakrishnan, J. Micromech. Microeng. 16, 1080 (2006).
  • 10. J. Bonse, A. Rosenfeld, and J. Krfiger, J. Appl. Phys. 106, 104910 (2009).

同被引文献7

引证文献1

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部