期刊文献+

基于多社交数据源的协同推荐方法研究 被引量:2

Research on Collaborative Recommendation Method Based on Multiple Data Sources of Social Network
下载PDF
导出
摘要 协同过滤推荐作为一种有效的推荐方法,普遍存在数据稀疏性和冷启动问题,利用社交网络的多项数据源对协同推荐方法进行了改进。为了克服评分矩阵的稀疏性问题,提出结合用户评分相似度和用户信任度选择推荐邻居,同时对用户相似度计算进行了改进;提出了一种简单有效的信任推理方法,能够识别出用户间隐含的间接信任关系,进一步缓解了数据稀疏性问题;为了解决推荐系统的冷启动问题,提出综合利用项目的类型属性信息和领域专家信息进行联合推荐。实验结果表明,提出的改进策略非常有效,在精度和召回率方面都较已有方法具有明显改善。 As an effective recommendation method, collaborative filtering typically has the data sparsity and cold-start problems. It was proposed that using multiple data sources of social network to overcome the above problems. First of all, both the rating similarity and the social trust between users were considered to resolve the data sparsity problem. Then a simple and effective trust reasoning method was proposed to identify the implicit trust relationship between users. In order to solve the cold-start problem, information of the category of items and domain experts was used for joint recommendation. Experimental results show that the proposed algorithm has significantly better precision and recall than existing methods.
出处 《电信科学》 北大核心 2015年第6期78-84,共7页 Telecommunications Science
基金 国家自然科学基金资助项目(No.61402336 No.61403338) 国家教育部科学基金资助项目(No.14YJCZH152) 浙江省自然科学基金资助项目(No.LQ12F02008) 浙江省科技计划基金资助项目(No.2013C31138 No.2012C33086)~~
关键词 社交网络 个性化推荐 信任推理 多数据源 领域专家 social network, personalized recommendation, trust inference, multiple data source, domain expert
  • 相关文献

参考文献16

  • 1徐雅斌,刘超,武装.基于用户兴趣和推荐信任域的微博推荐[J].电信科学,2015,31(1):7-14. 被引量:7
  • 2Lazer D, Pentland A S, Adamic L, et o!1. Computational social science. Science, 2009, 323(1): 721:723.
  • 3Golbeck J. Weaving a web of trust. Computer Science, 2008, 321 (5896):1640-1641.
  • 4Massa P, Bhattaeharjee B. Using trust in recommender systems: an experimental analysis trust management. Lecture Notes in Computer Science, 2004(2995): 221-255.
  • 5Caverlee J, Liu L, Webb S. The socialtrust framework for trusted social information management: architecture and algorithms. Information Sciences, 2010, 18(1): 95-112.
  • 6Song X D, Tseng B L, Lin C Y, et 01. Personalized recommendation driven by information flow. Proceedings of the ACM SIGIR Conference on Research and Development in Information Retrieval, Seattle, USA, 2006:509-516.
  • 7Gruhl D, Guha R, Liben-Nowell D,et ol. Information diffusion through hlogspace. Proceedings of the 13th International World Wide Web Conference, New York, USA, 2004:43:52.
  • 8Rodriguez M G, Leskovec J, Krause A. Inferring networks of diffusion and influence. Proceedings of the 16th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, Washington, USA, 2010:1:38.
  • 9Golbeck J A, Hendler J. Computing and applying trust in web-based social networks (doctor dissertation). University of Maryland at College Park, 2005.
  • 10Zhang Y, Chen H J, Wu Z H. A social network-based trust model for the semantic Web. Proceedings of the Third lntemational Conference on Autonomic and Trusted Computing, Wuhan, China, 2006:183-192.

二级参考文献86

  • 1彭泗清.信任的建立机制:关系运作与法制手段[J].社会学研究,1999(2):55-68. 被引量:381
  • 2林闯,彭雪海.可信网络研究[J].计算机学报,2005,28(5):751-758. 被引量:253
  • 3易平,蒋嶷川,张世永,钟亦平.移动ad hoc网络安全综述[J].电子学报,2005,33(5):893-899. 被引量:63
  • 4罗奇,余英,赵呈领,曹艳.自适应推荐算法在电子超市个性化服务系统中的应用研究[J].通信学报,2006,27(11):183-186. 被引量:12
  • 5Shardanand U,Maes P.Social information filtering:algorithms for automating "word of mouth"[C]//Proceedings of ACM CHI'95 Conference on Human Factors in Computing Systems.New York:ACM Press,1995,210-217.
  • 6Herlocker J,Konstan J A,Terveen L,et al.Evaluating collaborative filtering recommender systems[J].ACM Transactions on Information Systems,2004,22(1):5-53.
  • 7Geyer-Schulz A,Hahsler M,Wien W,et al.Evaluation of recommender algorithms for an internet information broker based on simple association rules and on the repeat-buying theory[DB/OL].[2008-10-12].http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.19.911.
  • 8Dahlen B J,Konstan J A,Herlocker J L,et al.Jumpstarting movielens:user benefits of starting a collaborative filtering system with "dead data"[DB/OL].[2008-10-12].http://www.bibsonomy.org/bibtex/24433e6aa3be2cdad117bfb5fd7a757a1/bsmyth.
  • 9Breese J S,Heckerman D,Kadie C.Empirical analysis of predictive algorithms for collaborative filtering[DB/OL].[2008-10-12].http://www.cs.pitt.edu/-mrotaru/comp/rs/Breese%20UAI%201998.pdf.
  • 10Herlocker J L,Konstan J A,Borchers A,et al.An algorithmic framework for performing collaborative filtering[C]// Hearst M A,Gey F F,Tong R.Proceedings of the 22nd International Conference on Research and Development in Information Retrieval (SIGIR'99) (Aug).New York:ACM Press,1999:230-237.

共引文献306

同被引文献17

引证文献2

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部