期刊文献+

考虑行为特征的多期鲁棒投资组合模型及实证研究 被引量:1

Empirical study of multi-period robust portfolio model with behavioral character
原文传递
导出
摘要 考虑投资者的行为特征以及模型参数的不确定性,构建考虑行为特征的多期鲁棒投资组合模型.在前景理论的基础上,引入动态损失厌恶系数和动态财富参考点,建立动态前景理论价值函数.为了满足投资者的安全性要求,在模型中考虑机会约束,调整模型的保守程度.针对模型多期规划的特点,设计两阶段初始化策略.进一步地,在标准粒子群算法的基础上,根据种群性能的反馈信息,设计多频振动变异操作,提出改进的粒子群算法.实证结果表明:改进的粒子群算法能够有效提高算法的求解精度;考虑行为特征的多期鲁棒投资组合模型能够满足投资者的心理预期,且在实际投资决策中具有可行性. Considering investors’ behavioral factor and the uncertainty of parameters,a multi-period robust portfolio model with behavioral character is developed.Based on the prospect theory,we propose a dynamic prospect theory value function,where both of the loss aversion parameter and reference wealth are updated dynamically.In order to satisfy investors’ safety requirement,chance constraint is introduced into the portfoUo model,which enables flexibly adjusting the degree of conservatism of the solution.Based on the characteristic of multi-period planning in the portfoUo model,a two-stage initialization strategy is designed.We also present an improved particle swarm optimization with multi-frequency vibrational mutation operator,which considers the feedback information during the searching process.The empirical results show that the algorithm improves the precision of the solution,as well as the proposed model meets the investors’ psychological expectation and is viable in practice.
作者 刘家和 金秀
出处 《系统工程理论与实践》 EI CSSCI CSCD 北大核心 2015年第6期1405-1415,共11页 Systems Engineering-Theory & Practice
基金 国家自然科学基金(71372186 71271047) 中央高校基本科研业务费(N100406003 N130606002)
关键词 投资组合 前景理论 鲁棒优化 多期组合 粒子群算法 portfolio selection prospect theory robust optimization multi-period portfolio particle swarm optimization
  • 相关文献

参考文献31

  • 1Markowitz H. Portfolio selection[J]. Journal of Finance, 1952, 7(1): 77-91.
  • 2Briec W, Kerstens K, Jokung O. Mean-variance-skewness portfolio performance gauging: A general shortage function and dual approach[J]. Management Science, 2007, 53(1): 135-149.
  • 3Calafiore G C. Multi-period portfolio optimization with linear control policies[J]. Automatica, 2008, 44(10): 2463-2473.
  • 4Yu M, Takahashi S, Inoue H, et al. Dynamic portfolio optimization with risk control for absolute deviation model[J]. European Journal of Operational Research, 2010, 201(2): 349-364.
  • 5Harris R D F, Mazibas M. Dynamic hedge fund portfolio construction: A semi-parametric approach[J]. Journal of Banking & Finance, 2013, 37(1): 139-149.
  • 6张卫国,张永,徐维军,杨兴雨.基于线性学习函数的泛证券投资组合策略[J].系统工程理论与实践,2012,32(8):1647-1654. 被引量:15
  • 7Black F, Litterman R. Global portfolio optimization[J]. Financial Analysts, 1992, 48(5): 28-43.
  • 8Soyster A L. Convex programming with set-inclusive constraints and applications to inexact linear programming[J]. Operations Research, 1973, 21(5): 1154-1157.
  • 9Bertsimas D, Sim M. The price of robustness[J]. Operations Research, 2004, 52(1): 35-53.
  • 10Kawas B, Thiele A. A log-robust optimization approach to portfolio management[J]. OR Spectrum, 2011, 33(1): 207-233.

二级参考文献40

  • 1Markowitz H M. Portfolio selection[J]. Journal of Finance, 1952, 8:77- 91.
  • 2Perold A F. Large-scale portfolio oPtimization[J]. Management Science, 1984, 30: 1143-1160.
  • 3Pang J S. A new efficient algorithm for a class of portfolio selection problems[J]. Operational Research, 1980, 28: 754-767.
  • 4Zhang W G, Wang Y L. An analytic derivation of admissible efficient frontier with borrowing[J]. European Journal of Operational Research, 2008, 184: 229-243.
  • 5Zhang W G, Wang Y L, Chen Z P, et al. Possibilistic mean-variance models and efficient frontiers for portfolio selection problem[J]. Information Sciences, 2007, 177:2787 -2801.
  • 6Zhang W G. Possibilistic mean-standard deviation models to portfolio selection for bounded assets[J]. Applied Mathematics and Computation, 2007, 189: 1614-1623.
  • 7Krichevsky R E, Trofimov V K. The performance of universal coding[J]. IEEE Transactions on Information Theory, 1981, 27: 199-207.
  • 8Cover T M, Thomas J A. Elements of Information Theory[M]. New York: John Wiley and Sons Inc, 1991.
  • 9Cover T M. Universal portfolio[J]. Mathematics Finance, 1991, 1(1): 1-29.
  • 10Cover T M, Ordentlich E. Universal portfolio with side information[J]. IEEE Transactions on Information Theory, 1996, 42(2): 348- 363.

共引文献22

同被引文献3

引证文献1

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部