期刊文献+

基于核主成分分析和粒子群优化神经网络的充填体强度预测 被引量:1

Prediction of compressive strength of backfill based on analysis of principal components of kernel and PSO artificial neural network
下载PDF
导出
摘要 以磷石膏、粉煤灰、磷渣等为主要原材料制备磷石膏胶结充填体,分析了主要原材料的理化特性,测定了磷石膏胶结充填体28d单轴抗压强度。通过核主成分分析对磷石膏胶结充填体单轴抗压强度影响因子进行非线性特征提取,基于获得的主成分构建粒子群优化BP人工神经网络(PSO-BP-ANN)预测模型。结果表明,核主成分分析能较好地实现充填体单轴抗压强度影响因子非线性特征的提取和降维的目的,同时,PSO-BP-ANN模型训练和预测值可决系数分别为0.995和0.991,均方根误差分别为3.660E-4和5.805E-2,平均相对误差分别为1.699%和3.602%,总体性能表现优于传统BP-ANN模型,对矿山充填体的配比设计具有指导意义。 The particle swarm optimization based BP artificial neu ral network (PSO-BP-ANN) model was made to predict the 28 days compressive strength of phosphogypsum backfill ,which con sists of phosphogypsum, fly ash, phosphorus slag and other mate rials. Meanwhile, the physicochemieal property research and uniaxial compression test were conducted. The PSO-BP ANN model was constructed based on the principal components obtained by the analysis of principal components of kernel to the impact factors of compressive strength of phosphogypsum backfill. The results indi cate that KPCA can extract nonlinear features of the impact factors of compressive strength of phosphogypsum backfill well, and the coefficients of determination of training and prediction values with PSO-BP-ANN model are 0. 995 and 0. 991, root-mean-square er rors are 3. 660E-4 and 5. 805E-2, average relative errors are 1. 699 and 3. 602 respectively. Above all, the PSO-BP-ANN model per forms better than BP-ANN model, that has guning significance to the matching design of backfill in mines.
出处 《化工矿物与加工》 CAS 北大核心 2015年第6期31-36,共6页 Industrial Minerals & Processing
关键词 磷石膏充填体 抗压强度预测 核主成分分析 粒子群优化 BP神经网络 phosphogypsum backfill material prediction of corn pressive strength principal components of kernel PSO BP arti- ficial neural network
  • 相关文献

参考文献15

  • 1刘代俊,刘玉琨,钟本和,王雪梅,胡厚美,杨三可,胡海,周永波.高强磷石膏建材的硬化机理[J].化工矿物与加工,2005,34(5):24-25. 被引量:12
  • 2刘志祥,周士霖,郭永乐.磷石膏充填体强度GA-BP神经网络预测模型[J].矿冶工程,2011,31(6):1-5. 被引量:23
  • 3Marek Slorkski. A comparison of model selection methods for compressive strength prediction of high-performance concrete u sing neural networks[J]. Computers and Structures, 2010, 88: 1248-1253.
  • 4Jialin Zhou, Zhengcheng Duan, Yong Li, et al. PSO-based neural network optimization and its utilization in a boring machine [J]. Journal of Materials Processing Technology, 2006, 178: 19- 23.
  • 5Mendes R, Kennedy J, Neves J. The fully informed particle swarm: simpler, maybe better[J]. IEEE Transactions on Evolu- tionary Computation, 2004, (8): 204-210.
  • 6B. Scholkopf, A.J. Smola, K.-R. Miiller. Nonlinear compo- nent analysis as a kernel eigenvalue problem. Neural Computa- tion, 1998, 10(5): 1299-1319.
  • 7Baudat G. Anouar F. Generalized discriminant analysis using a kernel function[J]. Neural Computing, 2000, 12(10): 2385- 2404.
  • 8Twining C J, Taylor C J. The use of kernel principal compo nent analysis to model data distributions[J]. Pattern Recognition, 2003, 36: 217-227.
  • 9Fatih Ozcan, Cengiz D. Atis, Okan Karahan, Erdal Uncuo- glu, Harun Tanyildizi. Comparison of artificial neural network and fuzzy logic models for prediction of long-term compressive strength of silica fume conerete[J]. Advances in Engineering Software, 2009, 40:856-863.
  • 10Saridemir M. Predicting the compressive strength of mortars containing metakaolin by artificial neural networks and fuzzy logic [J]. AdvEngSoft, 2009, 40(9):920 - 927.

二级参考文献24

共引文献42

同被引文献15

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部