期刊文献+

基于结构化的加权联合特征表观模型的目标跟踪方法 被引量:10

Object Tracking Method Based on Structural Appearance Model with Weighted Associated Features
原文传递
导出
摘要 为了解决单目标跟踪中的光照变化、部分遮挡问题,提出了一种结构化的加权联合特征表观模型.该模型将被跟踪的目标图像划分成若干图像块,在每个图像块内计算其颜色特征和纹理特征,将这些特征加权形成特征向量作为目标的表观模型.以该模型为基础,利用贝叶斯理论,提出一种跟踪方法.实验结果表明了该方法的有效性. A structural appearance model with weighted associated features is proposed to deal with illumination variation and partial occlusion questions in single object tracking. The tracked object image is divided into small image blocks. Thereafter, the color features and textural features are calculated within each block. Next, these features are weighted and a vector is composed, which is presumed the appearance model of the tracked object. Subsequently, through the application of Bayes' theorem, a tracking method based on the appearance model is proposed. Finally, the effectiveness of the proposed tracking method is demonstrated through experimental results.
出处 《信息与控制》 CSCD 北大核心 2015年第3期372-378,384,共8页 Information and Control
基金 国家自然科学基金面上项目(NSFC 61375014)
关键词 表观模型 目标跟踪 朴素贝叶斯 颜色特征 纹理特征 appearance modelobject tracking naive Bayes color feature textural feature
  • 相关文献

参考文献20

  • 1刘士荣,朱伟涛,杨帆,仲朝亮.基于多特征融合的粒子滤波目标跟踪算法[J].信息与控制,2012,41(6):752-759. 被引量:13
  • 2Tsagkatakis G, Savakis A. Online distance metric learning for object tracking[ J ]. IEEE Transactions on Circuits and S3,stems tbr Video Tet'h- nology 2011, 21(12): 1810-1821.
  • 3Black M, Jepson A. Eigentraeking: Robust matching and tracking of articulated objects using a ~iew l~rence on Computer Vision. Belliu, (,ennany: Springer, 1996:329 - 342.
  • 4Jepson A, Fleet D, EI-Maraghi T. Robust online appearance models for visual tracking[ J !. IEEE Transactions on Pattern Analysis and Ma- chine Intelligence, 2003, 25(3 ) : 1296 - 1311.
  • 5Ross D, Lira J, l,in R, et al. Incremental learning for robust visual tracking[J]. International Journal of Comlmter Vision, 2008, 77 ( 1 ) : 125 - 141.
  • 6Adam A, Rivlin E, Shimshoni 1. Rolmst fragments-based tracking using the integral histogram[ C ]//IEEE Conference on Computer Vision and Pattern Reeognilion. Piscataway, N J, USA: IEEE, 2006:798-805.
  • 7Mei X, Ling H. Robust ",,isual tracking using LI minimization[ C ~//International Conference on Computer Vision. Berlin, Germany : Springer, 2009~ 1436 - 1443.
  • 8Avidan S. Supporl vector tracking[ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004, 26(5) : 1064.
  • 9Avidan S. Ensemble tracking[ J i. 1EEE Transactions on Pattern Analysis and Machine lmelligen~'e, 2007, 29( 1 ) : 261 -271.
  • 10Cumanieiu D, Ramesh V, Meet P. Kernel-based object tracking[ J]. IEEE Transactions on Pattern Analysis and Machine lnlel 25(2) : 564 -575. 072.

二级参考文献54

共引文献23

同被引文献82

  • 1高宪文,刘浩,赵亚平.模糊复合控制方法在焦炉控制系统中的应用研究[J].控制与决策,2005,20(4):434-438. 被引量:19
  • 2单程赣.单玉峰.姚磊.射频|只别(RFlD)原理与应用[M].北京:电子工业出版社,2008,7:1-25.
  • 3康东,石喜勤,等.射频蚁别(RFID)核心技术与典型应用开发案例[M].
  • 4MEI X,LING H.Robust visual tracking using L1 minimization[C]//Proceedings of 2009 IEEE International Conference onComputer Vision.Berlin,Germany:Springer,2009:1436-1443.
  • 5COLLINS R,LIU Y,LEORDEANU M.Online selection of dis-criminative tracking features[J].IEEE Transactions on PatternAnalysis and Machine Intelligence,2005,27(8):1631-1643.
  • 6Diftler M A, Mehling J S , Abdallah M E, et al. Robonaut 2-the first humanoid robot in space [C] / / Robotics and Automation( 1CRA ) , 2011 JEEE international Conference on.IEEE, 2011: 2178-2183.
  • 7Brown S. Real C-3PO- This hyper intuitive talking robot isgoing to the international Space Station [J/OL]. (2013)[2016]. http ://www. digitalafro. com/real-c-3po-this-hyperintuitive-talking-robot-is-going-to-the-international-space-station/.
  • 8Zawieska K , Duffy B R. Social exploration : Mars rovers[C]//Proceedings of the 2014 ACM/iEEE international conferenceon Human-robot interaction. ACM, 2014: 324-325.
  • 9Ott C, Eiberger O, Friedl W, et al. A humanoid two-armsystem for dexterous manipulation[C]//2006 6th iEEE-RASinternational Conference on Humanoid Robots. iEEE, 2006:276-283.
  • 10Didot F, Schoonejans P, Pensavalle E, et al. ELROBOT underwatermodel: system overview, tests results & outlook[R]. i-SAiRAS'08, 2008.

引证文献10

二级引证文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部