期刊文献+

从头计算确定FeAs超导层能够作为锂离子电池的新型负极材料(英文)

An ab initio study for electrochemistry:Superconductor layer Fe As as a novel anode material for lithium ion batteries
下载PDF
导出
摘要 通过第一性原理计算发现这些传统的铁基超导层状材料(Fe As)不仅十分适合作为锂离子电池负极,同时它们还具有1 044 mA h/g的高理论容量,几乎是传统石墨负极材料的三倍容量.计算证实,在第一次充电过程中,Li/Fe As将首先通过两步转换反应形成最终产物Li3As和Fe.在接下来的放-充电过程中则主要通过As和锂离子之间的合金化反应来实现电池的可持续充放电,其电化学平台分别为0.77 V和1.66 V,这与硅负极材料的合金化反应机理十分类似.鉴于这类材料高的能量密度及好的动力学性能,我们有理由相信铁基超导层状材料可以作为一种复杂功能化的电极材料而应用于未来的电池储能系统. A potential application of Fe‐based layers (FeAs ,FeSe) as a new promising anode material was proposed in the fields of second batteries by systematic first‐principles calculations . The calculation results indicate that those conventional superconductor layers ,such as FeAs ,can deliver a theoretical capacity of 1 044 mAh/g ,three times higher than that of the graphite‐type anode .Further dynamic investigation suggests that Li/FeAs experiences a conversion reaction forming Li3 As and Fe through a two‐step reaction in the first cycle .In the following cycles ,Li‐ion reversibly intercalates into arsenic at 0.77 V or deintercalates from Li3 As at 1.16 V ,which is similar to the lithiation/de‐lithiation mechanism of silicon anode materials .Based on their high energy density and good dynamic mechanism ,these superconductor layers are thought to be a complex functional electrode candidates for future large‐energy batteries systems .
出处 《中国科学技术大学学报》 CAS CSCD 北大核心 2015年第5期353-358,共6页 JUSTC
基金 Supported by National Natural Science Foundation of China(11179001,11275227)
关键词 超导层 锂离子电池 密度泛函理论 相对能量 superconductor layer lithium-ion battery density functional theory relative energy
  • 相关文献

参考文献1

二级参考文献18

  • 1P. Poizot, S. Laruelle, S. Grugeon, L. Dupont and J.M. Tarascon: Nature, 2000, 407, 496.
  • 2S. Grugeon, S. Laruelle, L. Dupont and J.M. Tarascon: Solid. State. Sci., 2003, 5, 895.
  • 3M. Pernet, P. Strobel, B. Bonnet and Y. Chabre: Solid State Ion., 1993, 66, 259.
  • 4S.Y. Zeng, K.B. Tang and T.W. Li: J. Colloid Interface Sci., 2007, 312, 513.
  • 5Y. NuLil P. Zhang,Z.P. Guo, P. Munroe and H. Liu: Electrochim. Acta, 2008, 53, 4213.
  • 6P.C. Wang, H.P. Ding, Tursun Bark and C.H. Chen: Electrochim. Acta, 2007, 52, 6650.
  • 7P.L. Taberna, S. Mitra, P. Poizot, P. Simon and J.M. Tarascon: Nat. Mater., 2006, 5, 567.
  • 8B.T Hang, I. Watanabe, T. Doi, S. Okada and J.I. Yamaki: J. Power Sources, 2006, 161, 1281.
  • 9D. Larcher, C. Masquelier, D. Bonnin, Y. Chabre, V. Masson, J.B. Leriche and J.M. Tarascon: J. Elec- trochem. Soc., 2003, 150, A133.
  • 10D.W. Zhang, C.H. Chen, J. Zhang and F. Ren: Chem. Mater., 2005, 17, 5242.

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部