期刊文献+

一种含参数的修正HS共轭梯度法及其收敛性 被引量:3

A modified HS conjugate gradient method with parameter and its convergence
下载PDF
导出
摘要 提出了一种含参数的修正HS共轭梯度法,该算法具有性质:1参数βBHSk不仅具有梯度值的信息还具有函数值的信息;2参数βBHSk是非负的;3其产生的搜索方向是充分下降的。在合适的条件下,证明了该算法在弱的Wolfe线搜索下具有全局收敛性,数值结果证明了该算法对于求解无约束优化问题的有效性。 A modified HS conjugate gradient method is proposed, which has the following proper-ties:①The parameter βBHSk has not only gradient value information but also function value informa-tion;②The parameter βBHSk ≥0; ③The search direction of this method possesses the sufficient de-scent property. Under suitable conditions, it is proved that the proposed method with weak Wolfe line search is globally convergent. The numerical results show that the proposed method is effective for solving unconstrained optimization problems.
出处 《广西大学学报(自然科学版)》 CAS 北大核心 2015年第3期750-757,共8页 Journal of Guangxi University(Natural Science Edition)
基金 国家自然科学基金资助项目(11261006) 广西自然科学基金资助项目(2012GXNSFAA053002)
关键词 共轭梯度法 充分下降 WOLFE线搜索 全局收敛 无约束优化 conjugate gradient method sufficient descent Wolfe line search global convergence unconstrained optimization
  • 相关文献

参考文献17

  • 1POLAK E, RIBIERE G. Note sur la convergence de directions conjugees [ J ]. Rev Francaise Informat Recherche Oper- atinelle, 1969, 16: 35-43.
  • 2DAI Y, YUAN Y. A nonlinear conjugate gradient with a strong global convergence properties [ J ]. SIAM Journal on Opti- mization, 2000, 10: 177-182.
  • 3HESTENES M R, STIEFEL E. Methods of conjugate gradients for solving linear systems [ J ]. Journal of Research National Bureau of Standards : Section B, 1952, 49 : 409-436.
  • 4FLETCHER R, REEVES C. Function minimization by conjugate gradients [J]. Computer Journal, 1964, 7: 149-154.
  • 5LIU Y, STOREY C. Effcient generalized conjugate gradient algorithms [ J]. Journal of Optimization Theory and Applica- tions, 1991, 69: 129-137.
  • 6POLYAK B T. The conjugate gradient method in extreme problems [ J ]. USSR Comput Math Math Phys, 1969, 9 : 94-112.
  • 7YU G H, ZHAO Y L, WEI Z X. A descent nonlinear conjugate gradient method for large-scale unconstrained optimization [J]. Applied Mathematics and Computation, 2007, 187: 636-643.
  • 8李灿,黄双双.一种修正的WYL共轭梯度法及其全局收敛性[J].红河学院学报,2011,9(4):23-26. 被引量:1
  • 9YUAN G L, LU X W, WEI Z X. A conjugate gradient method with descent direction for unconstrained optimization [ J~. Journal of Computational and Applied Mathematics, 2009, 233: 519-530.
  • 10黎勇,韦增欣.一种WEI-YAO-LIU共轭梯度算法的全局收敛性[J].广西大学学报(自然科学版),2010,35(5):872-876. 被引量:1

二级参考文献27

  • 1戴彧虹,袁亚湘.非线性共轭梯度法[M].上海:上海科技出版社,1999.
  • 2WEI Z, YAO S, LIU L. The convergence properties of some new conjugate gradient methods[ J]. Applied Mathematics and Computation, 2006(183):1 341-1 350.
  • 3HUANG H, WEI Z, YAO S. The proof of the sufficient descent condition of the Wei-Yao-Liu conguate gradient method under the strong Wolfe-Powell line search [ J ]. Applied Mathematics and Computation, 2007 ( 189 ) : 1 241-1 245.
  • 4WEI Z, LI G, QI L. Global convergence of the Polka-Ribiere-Polyak conjugate gradient method with an Armijo-type inexact line search for nonconvex unconstrained optimization problem [ J ]. Mathematics of Computation, 2008 (11 ) : 2 173- 2 193.
  • 5TANG C, WEI Z, LI G. A new version of the Liu-Storey conjugate gradient method[ J]. Applied Mathematics and Computation, 2007 ( 189 ) : 302-313.
  • 6Fletcher,R.,Reeves,C..Function minimization by conjugate gradients[J].J.Comput.,1964,7:149-154.
  • 7Polak,B.T..The conjugate gradient method in extreme problems [J].USSR Comp. Math.Math.Phys., 1969,9:94-112.
  • 8Hestenes,M.R.,Stiefel,E.L..Method of conjugate gradient for solving linear system[J]j.Res.Nat.Bur.Stand.,1952,49:409-432.
  • 9Fletcher,R..Practical Methods of Optimization vol. 1: Unconstrained optimization [C].New York, John Wiley&Sons, 1987.
  • 10Liu,Y.,Storey,C..Efficient generalized conjugate gradient al gorithms[J].Journal of Optimization Theory and Application, 1991,69:129-137.

共引文献2

同被引文献15

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部