摘要
提出了一种含参数的修正HS共轭梯度法,该算法具有性质:1参数βBHSk不仅具有梯度值的信息还具有函数值的信息;2参数βBHSk是非负的;3其产生的搜索方向是充分下降的。在合适的条件下,证明了该算法在弱的Wolfe线搜索下具有全局收敛性,数值结果证明了该算法对于求解无约束优化问题的有效性。
A modified HS conjugate gradient method is proposed, which has the following proper-ties:①The parameter βBHSk has not only gradient value information but also function value informa-tion;②The parameter βBHSk ≥0; ③The search direction of this method possesses the sufficient de-scent property. Under suitable conditions, it is proved that the proposed method with weak Wolfe line search is globally convergent. The numerical results show that the proposed method is effective for solving unconstrained optimization problems.
出处
《广西大学学报(自然科学版)》
CAS
北大核心
2015年第3期750-757,共8页
Journal of Guangxi University(Natural Science Edition)
基金
国家自然科学基金资助项目(11261006)
广西自然科学基金资助项目(2012GXNSFAA053002)
关键词
共轭梯度法
充分下降
WOLFE线搜索
全局收敛
无约束优化
conjugate gradient method
sufficient descent
Wolfe line search
global convergence
unconstrained optimization