期刊文献+

判别稀疏保持嵌入及其在人脸识别中的应用

Discriminant Sparsity Preserving Embedding with Application to Face Recognition
下载PDF
导出
摘要 稀疏保持投影(SPP)是最近提出的稀疏子空间学习方法,该方法的目标是保持数据的稀疏结构关系。然而,SPP是无监督并且不适合分类任务。为了提取判别人脸特征,提出一种新的判别稀疏保持嵌入(DSPE)算法。DSPE在SPP的目标函数中引入了Fisher准则,强调了判别信息;另一方面,用施密特正交化获得人脸子空间的正交基向量,进一步增强了算法的识别性能。在ORL和FERET人脸库上的实验结果表明,本文提出的DSPE在特征提取和分类识别方面有更好的效果。 Sparsity Preserving Projections (SPP) is a recently proposed sparse subspace learning method which aims to preserve the sparse reconstructive relationship of the data. However, SPP is unsupervised and unsuitable for classification tasks. To extract the discriminant feature, Discriminant Sparsity Preserving Embedding (DSPE) is proposed. DSPE introduces Fisher criterion into the objective of SPP and emphasizes the discriminant information. On the other hand, Schmidt orthogonalizaiton is used to obtain the orthogonal basis vectors of the face subspace, which further enhances recognition performance. Experiments results on ORL and FERET face database indicate that the proposed DSPE has better effect on feature extraction and classification recognition.
出处 《光电工程》 CAS CSCD 北大核心 2015年第6期8-13,共6页 Opto-Electronic Engineering
基金 国家自然科学基金河南人才培养联合基金项目(U1204613) 河南省科技攻关计划重点项目(122102210138) 河南省高等学校青年骨干教师资助计划项目(2011GGJS-173) 河南省教育厅科学研究重点项目(14A520055)
关键词 稀疏保持投影 FISHER准则 人脸识别 降维 施密特正交化 sparsity preserving projections Fisher criterion face recognition dimensionality reduction Schmidt othogonalization
  • 相关文献

参考文献17

  • 1BELLMAN R. Adaptive Control Processes: A Guided Tour [M]. Princeton: Princeton University Press, 1961: 140-176.
  • 2赵振华,郝晓弘.局部保持鉴别投影及其在人脸识别中的应用[J].电子与信息学报,2013,35(2):463-467. 被引量:25
  • 3BELHUMEUR P N, HESPANHA J P, KRIEGMAN D J. Eigenfaces vs. Fisherfaces: Recognition using class projection [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence(S0162-8828), 1997, 19(7): 711-720.
  • 4ROWEIS S L, SAUL L. Nonlinear dimensionality reduction by locally linear embedding [J]. Science(S0036-8075), 2000, 290(5500): 2323-2326.
  • 5BELKIN M, NIYOGI P. Laplacian eigenmaps and spectral techniques for embedding and clustering [C]// Neural Information Processing Systems, Vancouver: MITPress, 2001: 585-591.
  • 6HE Xiaofei, CAI Deng, YAN Shuicheng, et al. Neighborhood Preserving Embedding [C]//Proc. of 10th IEEE Int. Conf. on Computer Vision, Beijing, China, October 17-20, 2005: 1208-1213.
  • 7HE Xiaofei, YAN Shuicheng, HU Yuxiao, et al. Face recognition using laplacianfaces [J]. IEEE Transactions on Pattern Analysis andMachine Intelligence(S0162-8828), 2005, 27(3): 328-340.
  • 8YAN Shuicheng, XU Dong, ZHANG Benyu, et aL Graph Embedding: A General Framework for Dimensionality Reduction [C]// Proceeding of IEEE Comput, Soc. Conf. Computer Vision and Pattern Recognition, San Diego, CA, United states, June20-25, 2005: 20-25.
  • 9侯书东,孙权森.稀疏保持典型相关分析及在特征融合中的应用[J].自动化学报,2012,38(4):659-665. 被引量:22
  • 10QIAO Lishan, CHEN Songcan, TAN Xiaoyang. Sparsity Preserving Projections with Applications to Face Recognition [J]. Pattern Recognition(S0031-3203), 2010, 43(1): 331-341.

二级参考文献83

  • 1宋枫溪,程科,杨静宇,刘树海.最大散度差和大间距线性投影与支持向量机[J].自动化学报,2004,30(6):890-896. 被引量:58
  • 2孙权森,曾生根,王平安,夏德深.典型相关分析的理论及其在特征融合中的应用[J].计算机学报,2005,28(9):1524-1533. 被引量:89
  • 3罗四维,赵连伟.基于谱图理论的流形学习算法[J].计算机研究与发展,2006,43(7):1173-1179. 被引量:76
  • 4Duda R O, Hart P E, Stork D G. Pattern Classification [M]. New York: John Wiley & Sons, 2000.
  • 5Belhumeur P N, Hespanha Joao P, Kriegman David J. Eigenfaces vs. Fisherfaces: Recognition using class specific linear projection [J]. IEEE Trans. Pattern Analysis and Machine Intelligence(S0162-8828), 1997, 19(7): 711-720.
  • 6HE Xiao-fei, YAN Shui-cheng, HU Yu-xiao, et al. Face Recognition Using Laplacianfaces [J]. IEEE Trans on Pattern Analysis and Machine Intelligence(S0162-8828), 2005, 27(3): 328-340.
  • 7HE Xiao-fei, CAI Deng, YAN Shui-cheng, et al. Neighborhood preserving embedding [C]//Tenth IEEE International Conferenee onComputerVision, Beijing, China, Oct 17-21, 2005, 2: 1208-1213.
  • 8YAN Shui-cheng, XU Dong, ZHANG Ben-yu, et al. Graph embedding and extensions: A general framework for dimensionality reduction [J]. IEEE Trans. Pattern Analysis and Machine Intelligence(S0162-8828), 2007, 29(1): 40-51.
  • 9Belkin M, Niyogi R Laplacian eigenmaps and spectral techniques for embedding and clustering [C]//Advanees in Neural Information ProeessingSystem, Vancouveer, British Columbia, Canada, December3-8, 2001: 585-591.
  • 10Roweis S T, Saul L K. Nonlinear dimensionality reduction by locally linear embedding [J]. Science(S0036-8075), 2000, 290(5500): 2323-2326.

共引文献66

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部