摘要
稀疏保持投影(SPP)是最近提出的稀疏子空间学习方法,该方法的目标是保持数据的稀疏结构关系。然而,SPP是无监督并且不适合分类任务。为了提取判别人脸特征,提出一种新的判别稀疏保持嵌入(DSPE)算法。DSPE在SPP的目标函数中引入了Fisher准则,强调了判别信息;另一方面,用施密特正交化获得人脸子空间的正交基向量,进一步增强了算法的识别性能。在ORL和FERET人脸库上的实验结果表明,本文提出的DSPE在特征提取和分类识别方面有更好的效果。
Sparsity Preserving Projections (SPP) is a recently proposed sparse subspace learning method which aims to preserve the sparse reconstructive relationship of the data. However, SPP is unsupervised and unsuitable for classification tasks. To extract the discriminant feature, Discriminant Sparsity Preserving Embedding (DSPE) is proposed. DSPE introduces Fisher criterion into the objective of SPP and emphasizes the discriminant information. On the other hand, Schmidt orthogonalizaiton is used to obtain the orthogonal basis vectors of the face subspace, which further enhances recognition performance. Experiments results on ORL and FERET face database indicate that the proposed DSPE has better effect on feature extraction and classification recognition.
出处
《光电工程》
CAS
CSCD
北大核心
2015年第6期8-13,共6页
Opto-Electronic Engineering
基金
国家自然科学基金河南人才培养联合基金项目(U1204613)
河南省科技攻关计划重点项目(122102210138)
河南省高等学校青年骨干教师资助计划项目(2011GGJS-173)
河南省教育厅科学研究重点项目(14A520055)
关键词
稀疏保持投影
FISHER准则
人脸识别
降维
施密特正交化
sparsity preserving projections
Fisher criterion
face recognition
dimensionality reduction
Schmidt othogonalization