期刊文献+

雷达组网系统误差的可观测性分析和仿真验证

Observability Analysis of System Errors of Radar Group and its Simulation Validation
下载PDF
导出
摘要 首先分析了完全测量情形下雷达组网系统误差的求解原理,并根据推导的求解公式对其可观测性进行了理论分析。分析表明,目标和雷达的相对位置关系是影响偏差可观测性的主要因素;进一步,还给出了影响偏差可观测性的若干基本规律。此外,还以两部2D雷达组网为例进行了仿真分析和验证。仿真分析不仅给出了偏差可观测性贡献度的分布特征,还对若干典型航路下的偏差可观测性给出了典型判断。仿真结果验证了上述基本影响规律和典型判断。结果可为雷达组网系统误差估计的有效性评估、雷达组网布局等提供理论支持和参考。 This paper firstly proposes a calculating formula for the system error of radar group (SERG) by analyzing its sol- ving principle. Based on this formula, theoretical analysis on the SERG is presented, which not only indicates that the rela- tive position relationship between targets and sensors is the major impact factor on the observability of SERG ( OSERG), but also discovers some essential rules on how the OSERG is impacted. Simulation analysis on a typical 2D radar group, de- scribes the distribution feature of contribution to its OSERG, from which some typical judgments on the OSERG under several typical fairways are made. All the results, including the essential impact rules and typical judgments, are shown to be valid by the simulation results, and thus can be used as a support foundation in fields such as validity evaluation of SERG estimation and distribution management of radar group.
作者 刘全 吴涛涛
出处 《指挥控制与仿真》 2015年第3期105-111,共7页 Command Control & Simulation
关键词 系统误差可观测性 相对位置关系 影响规律 典型判断 observability of system error relative position relationship impact rules typical judgments
  • 相关文献

参考文献13

  • 1Y. Kousuge, T. Okada. Bias estimation of two 3-dimen- sional radars using Kalman filter[ J] .The 4-th Int. Work- shop on Advanced Motion Control, 1996,1 (1) :377-382.
  • 2W. Li, H.Leung and Y. Zhou. Space-time registration of radar and ESM using unscented Kalman filter [ J ]. 1EEE AES, 2004, 40(3) : 824-836.
  • 3J.J. Burke.The SAGE real quality control fraction and its interface with BUIC II/BUIC III[ M]. MITRE Corp. Tech. Rep. 308, Nov. 1966.
  • 4H. Leung, M.Blanchette and C. Harrison. A least squares fusion of multiple radar data [ J ]. Proc. RADAR, Paris, France, 1994 : 364-369.
  • 5M.P. Dana. Registration: A prerequisite for multiple sensor tracking, in Muhitarget-Muhisensor Tracking: Ad- vanced Applications [ M ]. Y. Bar-Shalom, Ed. Norwood, MA: Artech House, 1990.
  • 6Y. Zhou, H. Leung and P.C. Yip. An exact maximum likelihood registration algorithm for data fusion [ J ]. IEEE Transactions on Signal Processing, 1997, 45 (6): 1560-1572.
  • 7N. Okello, B. Ristic. Maximum likelihood registration for multiple dissimilar sensors[ J]. IEEE Transactions on Aer- ospace and Electronic Systems, 2003, 39 (3) : 1074-1082.
  • 8E.J. Dela Cruz, A.T. Alouani, T.R.Rice and W. D. Blair. Sensor registration in multisensor systems [ J ]. SPIE Vol. 1698, Signal and Data Processing of Small Targets, 1992: 382-393.
  • 9R.E.Hemick, T.R.Rice. Removal of alignment errors in an integrated system of two 3-D sensors [ J]. IEEE AES, 1993, 29(4) :1333-1343.
  • 10G.H. Wang, L. Chen. Optimized Bias Estimation Model for 3-D Radar Considering Platform Attitude Errors [ J ]. IEEE Aerospace and Electronic Systems Magazine, 2012, 27(1) :19-24.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部