期刊文献+

面向属性(对象)概念格基于直观图的保并(交)约简

MIE-preserving reduction and JIE-preserving reduction of property(object)-oriented concept lattices based on the pictorial diagram
下载PDF
导出
摘要 属性约简是形式概念分析中的一个重要问题,文中主要研究面向属性概念格和面向对象概念格的保持并(交)不可约元外延不变的约简。给出面向属性概念格和面向对象概念格的保并约简和保交约简的定义;研究了这两个格的保并约简和保交约简之间的关系;利用形式背景直观图,给出获取这两种格的保并约简和保交约简的理论与方法。 Attribute reduction is an important issue in formal concept analysis. This paper mainly studies MIE (meet irreducible element)-preserving reduction and JIE (join irreducible element)-preserving reduction of property-oriented and object-oriented concept lattices. Firstly, the definitions of MIE-preserving reduction and JIE-preserving reduction of property-oriented and object-oriented concept lattices are given. Then, the rela- tionship between MIE (JIE)-preserving reduction in property-oriented and its counterpart in object-oriented concept lattices is presented. Finally, pictorial diagram is used to give the theory and method of finding the MIE-preserving reduction and JIE-preserving reduction.
出处 《西北大学学报(自然科学版)》 CAS CSCD 北大核心 2015年第3期357-364,共8页 Journal of Northwest University(Natural Science Edition)
基金 国家自然科学基金资助项目(11371014 11071281)
关键词 面向属性概念格 面向对象概念格 保并约简 保交约简 直观图 attribute-oriented concept lattices object-oriented concept lattices MIE-preserving reduction JIE-preserving reduction pictorial diagram
  • 相关文献

参考文献12

  • 1WILLE R. Restructuring lattice theory: an approach based on hierarchies of concepts [ C ]. RIVAL I ( Ed. ), Ordered Sets. Dordrecht : Reidel, 1982:445- 470.
  • 2GANTER B, WILLE R. Formal Concept Analysis [ M ]. New York : Mathematical Foundations. Springer- Verlag, 1999.
  • 3CARPINETO C, ROMANO G. A lattiee conceptual clustering system and its application to browsing re- trieval [J]. Machine Learning, 1996, 10: 95-122.
  • 4CHEN Y H, YAO Y Y. A muhiview approach for in- telligent data analysis based on data operators [ J ]. In- formation Sciences ,2008, 178 ( 1 ) : 1-20.
  • 5KENT R E. Rough concept analysis: a synthesis of rough sets and formal concept analysis [ J ]. Fundamen- ta Informaticae, 1996, 27: 169-181.
  • 6HU K Y, SUI Y F, LU Y C, et al. Concept approxi- mation in concept lattice [ J ]. Lecture Notes in Com- puter Science, 2001, 20 ( 35 ) : 167-173.
  • 7DUNTSCH I, GEDIGA G. Approximation operators in qualitative data analysis [ C ]//Theory and Application of Relational Structures as Knowledge Instruments. Heidelberg: Springer, 2003.
  • 8YAO Y Y. A comparative study of formal concept a- nalysis and rough set theory in data analysis [ J ]. Lec- ture Notes in Artificial Intelligence, 2004, 3066: 59- 68.
  • 9张文修,魏玲,祁建军.概念格的属性约简理论与方法[J].中国科学(E辑),2005,35(6):628-639. 被引量:194
  • 10万青,魏玲,李涛.一种基于并不可约元的建格新方法[J].西北大学学报(自然科学版),2013,43(1):10-14. 被引量:4

二级参考文献29

  • 1李云,刘宗田,陈崚,徐晓华,程伟.多概念格的横向合并算法[J].电子学报,2004,32(11):1849-1854. 被引量:50
  • 2Oosthuizen G D. The Application of Concept Lattice to Machine Learning. Technical Report, University of Pretoria, South Africa, 1996.
  • 3Ho T B. Incremental conceptual clustering in the framework of Galois lattice. In: Lu H, Motoda H, Liu H, eds. KDD: Techniques and Applications. Singapore: World Scientific, 1997. 49~64.
  • 4Kent R E. Bowman C M. Digital Libraries, Conceptual Knowledge Systems and the Nebula Interface. Technical Report, University of Arkansas, 1995.
  • 5Corbett D, Burrow A L. Knowledge reuse in SEED exploiting conceptual graphs. In: International Conference on Conceptual Graphs (ICCS'96). Sydney, 1996. University of New South Wales, 1996. 56~60.
  • 6Schmitt I, Saake G. Merging Inheritance hierarchies for scheme integration based on concept lattices [EB/OL]. http: //www.mathematic.tu-darm stadt.de/ags/ag1.
  • 7Siff M, Reps T. Identifying modules via concept analysis. In: Harrold M J, Visaggio G, eds. International conference on software maintenance. Bari, Italy. Washington, DC: IEEE Computer Society, 1997. 170~179.
  • 8Ho T B. An approach to concept formation based on formal concept analysis. IEICE Trans Information and Systems, 1995, E782D (5): 553~559.
  • 9Carpineto C, Romano G. Galois: an order-theoretic approach to conceptual clustering. In: Utgoff P, ed. Proceedings of ICML 293. Amherst: Elsevier, 1993. 33~40.
  • 10Godin R. Incremental concept formation algorithm based on Galois (concept) lattices. Computational Intelligence, 1995, 11(2): 246~267.

共引文献195

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部