期刊文献+

基于局部和全局信息的改进聚类算法 被引量:3

Improved Clustering Algorithm Based on Local and Global Information
下载PDF
导出
摘要 传统K-means算法在随机选取初始聚类中心时,容易导致结果不稳定,谱聚类算法直接在相似矩阵上进行分割,对结果的准确性影响较大,而局部和全局正则化聚类算法未考虑数据空间分布对结果的影响。为此,引入离散度矩阵对局部和全局正则化聚类算法进行改进。改进算法考虑数据的分布信息,通过在局部信息目标函数中引入离散度矩阵,结合全局信息的目标函数,将目标函数最小化问题转换为分解稀疏矩阵特征的问题。在UCI机器学习数据集和公共数据挖掘数据集上的实验结果表明,与K-means及标准谱聚类算法相比,该算法的预测精度更高。 Traditional K-means clustering algorithm is sensitive to the initialization. Spectral clustering operates on the similar matrix,and severely affects the cluster result. Clustering with local and global regularization does not take the distribution of data set into consideration. To solve this problem,this paper introduces the dispersion matrix to improve the clustering on the base of local and global regularization. The proposed algorithm takes the distribution of data set into consideration which combines the local information and dispersion matrix. The global optimal information is considered, and then it gets the final optimization problem which can be solved by the eigenvalue decomposition of a spare symmetric matrix. Several mentioned algorithms are tested on UCI machine learning data sets and public data mining data sets. Experimental results and comparison results show the greater performance of the proposed algorithm.
出处 《计算机工程》 CAS CSCD 北大核心 2015年第6期165-171,共7页 Computer Engineering
基金 江苏省自然科学基金资助项目(BK2011417)
关键词 K-MEANS算法 谱聚类 离散度矩阵 特征分解 UCI数据集 K-means algorithm spectral clustering dispersion matrix characteristic decomposition UCI data set
  • 相关文献

参考文献22

  • 1孙吉贵,刘杰,赵连宇.聚类算法研究[J].软件学报,2008(1):48-61. 被引量:1077
  • 2Han Jiawei,Kamber M.Data Mining:Concepts and Techniques[M].San Francisco,USA:Morgan Kaufmann Publishers,2001.
  • 3Duda R O,Hart P E,Stork D G.Pattern Classication[M].New York,USA:John Wiley&Sons Inc.,2001.
  • 4He Ji,Lan Man,Tan Chew-Lim,et al.Initialization of Cluster Refinement Algorithms:A Review and Comparative Study[C]//Proceedings of International Joint Conference on Neural Networks.Washington D.C.,USA:IEEE Computer Society,2004:297-302.
  • 5Zha Hongyuan,He Xiaofeng,Chris D,et al.Spectral Relaxation for K-means Clustering[C]//Proceedings of Advances in Neural Information Processing Systems.Cambridge,USA:MIT Press,2002:1057-1064.
  • 6Shi Jianbo,Malik J.Normalized Cuts and Image Segmentation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2000,22(8):888-905.
  • 7Wang Fei,Zhang Changshui,Li Tao.Clustering with Local and Global Regularization[J].IEEE Transactions on Knowledge and Data Engineering,2009,21(12):1665-1678.
  • 8Belkin M,Niyogi P.Laplacian Eigenmaps for Dimensionality Reduction and Data Representation[J].Neural Computation,2003,15(6):1373-1396.
  • 9Zhou Dengyong,Bousquet O,Lal T N,et al.Learning with Local and Global Consistency[C]//Proceedings of Advances in Neural Information Processing Systems.Cambridge,USA:MIT Press,2003:321-328.
  • 10Roweis S,Saul L.Nonlinear Dimensionality Reduction by Locally Linear Embedding[J].Science,2000,290(5500):2323-2326.

二级参考文献1

共引文献1076

同被引文献10

引证文献3

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部