期刊文献+

基于稀疏表示的快速图像超分辨率算法 被引量:8

Fast Image Super-resolution Algorithm Based on Sparse Representation
下载PDF
导出
摘要 针对传统基于超完备字典的图像超分辨率重建算法训练样本庞大、训练时间长、稀疏度固定,且迭代时间长的问题,提出一种快速的图像超分辨率重建算法。该算法在字典训练阶段引入快速核密度估计算法对训练样本规模进行估计,得到数量合理的训练样本,在稀疏表示阶段使用改进的广义正交匹配追踪算法,克服稀疏表示算法中固定稀疏度的缺陷。实验结果表明,相比传统字典训练算法,该算法能提高超分辨率重构的精度,且平均迭代时间较少。 The traditional Super Resolution ( SR ) algorithm via over-complete sparse representation has several problems,such as too large training patches, long training and iteration time, and fixed sparse degree. In view of these disadvantages,a fast SR algorithm is proposed. The core of this algorithm is to estimate the scale of the training patches by introducing Fast Kernel Density Estimation( FastKDE) to get the reasonable number of training patches in the stage of dictionary learning,and to overcome the shortcomings of greed series of sparse representation algorithms with fixed sparse degree and shortens the iteration time by using improved Generalized Orthogonal Matching Pursuit( GOMP) algorithm in the stage of sparse representation. Experimental results show that compared with the traditional dictionary training algorithm,this algorithm can improve the accuracy of SR reconstruction,and the average iteration time is less.
出处 《计算机工程》 CAS CSCD 北大核心 2015年第6期211-215,220,共6页 Computer Engineering
基金 国家自然科学基金资助项目(61373055)
关键词 稀疏表示 压缩感知 快速核密度估计 广义正交匹配追踪 超分辨率 字典学习 sparse representation compressed sensing Fast Kernel Density Estimation (FastKDE) GeneralizedOrthogonal Matching Pursuit (GOMP) Super Resolution (SR) dictionary learning
  • 相关文献

参考文献13

  • 1Park S,Park Mtion,Kang M G.Super-resolution Image Reconstruc:A Technical Overview[J].IEEE Signal Processing Magazine,2003,20(3):21-36.
  • 2王欢,王永革.基于L_(1/2)正则化的超分辨率图像重建算法[J].计算机工程,2012,38(20):191-194. 被引量:7
  • 3Unser M,Aldroubi A,Eden M.rms for Continuous Image Representation and Interpolation[J].IEEE Transactions on Pattern Analysis and Machine IntelligenceKc Co,n1v9o9l1u,ti1o3n(31n)t:e2rp7o7-la2t8io5.
  • 4eys R G.Cubin for Digital Image Processing[J].IEEE Transactions on AcousticsSpeech,B,and Signal Processing,1981,29(6):1153-1160.
  • 5Freeman,Jones T R,Pasztor E C.Example Based Super-resolutioncations[J].IEEE Computer Graphics and Appli,2002,22(2):56-65.
  • 6Donoho D,Tsaig Y.Extensions of Compressed SensingProcessing[J].Signal,2006,86(3):533-548.
  • 7Pradeep S,Darabi S.Compressive Image Superresolution[C]//Proceedings of theems43rd Asilomar Conference on Signals.Washington D,Syst.C.,and Computerss,Pacific Grove,USA:IEEE Pres,2009:1235-12ia4n2.
  • 8Yang Jchao.Image Super-resolution via Sparse Representation[J].IEEE Transactions on Image ProcessingW,2010,19(11):2861-2873.
  • 9ang ShitongEimation,Wang Jun,Chun Fulai.Kernel Density st,Kernel Methods,and Fast Learning in Large Data Sets[J].IEEE Transactions on Cybernetics,2014,44(1):1-an20.
  • 10Wang Ji,Seokbeop K.Generalized Orthogonal Matching Pursuit[J].IEEE Transactions on Signal Processing,2012,60(12):6202-6216.

二级参考文献13

  • 1Thévenaz P, Blu T, Unser M. Handbook of Medical Imaging Processing and Analysis[M]. [S. l.] : Academic Press, 2000.
  • 2Unser M, Aldroubi A, Eden M. Fast B-spline Transforms for Continuous Image Representation and Interpolation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1991, 13(3): 277-285.
  • 3Irani M, Peleg S. Improving Resolution by Image Registration[J]. Graphical Models and Image Processing, 1991, 53(3): 231-239.
  • 4Stark H, Oskoui P. High-resolution Image Recovery from Image- plane Arrays, Using Convex Projection[J]. Journal of the Optical Society of America A, 1989, 6(11): 1715-1726.
  • 5Baker S, Kanade T. Limits on Super-resolution and How to Break Them[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(9): 1167-1183.
  • 6Freeman W T, Jones T R, Pasztor E C. Example Based Super- resolution[J]. IEEE Computer Graphics and Applications, 2002, 22(2): 56-65.
  • 7Chang Hong, Yeung D Y, Xiong Yimin. Super-resolution Through Neighbor Embedding[C] //Proceedings of 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Computer Society, 2004.
  • 8Yang Jianchao, Wright J, Ma Yi, et al. Image Super-resolution as Sparse Representation of Raw Image Patches[C] //Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Providence, USA: IEEE Press, 2008.
  • 9Yang Jianchao, Wright J, Huang T, et al. Image Super-resolution via Sparse Representation[J]. IEEE Transactions on Image Processing, 2010, 19(11): 2861-2873.
  • 10Candés E, Tao T. Error Correction via Linear Programming[C] // Proceedings of the 46th Annual IEEE Symposium on Foundations of Computer Science. Pittsburgh, USA: IEEE Press, 2005.

共引文献7

同被引文献63

  • 1徐忠强,朱秀昌.压缩视频超分辨率重建技术[J].电子与信息学报,2007,29(2):499-505. 被引量:9
  • 2Zhang X J, Wu X L. Image interpolation by adaptive 2-D autoregressive modeling and soft-decision estimation[J]. IEEE Transactions on Image Processing, 2008, 17(6): 887-896. [DOI: 10.1109/TIP.2008.924279].
  • 3Chavez R H, Ponomaryov V. Super resolution image generation using wavelet domain interpolation with edge extraction via a sparse representation[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(10): 1777-1781. [DOI: 10.1109/LGRS.2014.2308905].
  • 4Tai Y W, Liu S C, Brown M, et al. Super resolution using edge prior and single image detail synthesis[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. San Francisco, USA: IEEE, 2010: 2400-2407. [DOI: 10.1109/CVPR.2010.5539933].
  • 5Zhang K B, Gao X B, Tao D C, et al. Single image super-resolution with non-local means and steering kernel regression[J]. IEEE Transactions on Image Processing, 2012, 21(11): 4544-4556. [DOI: 10.1109/TIP.2012.2208977].
  • 6Zeyde R, Elad M, Protter M. On Single Image Scale-up Using Sparse-Representations[M]. Berlin: Springer, 2012: 711-730. [DOI: 10.1007/978-3-642-27413-8_47].
  • 7Dong W S, Zhang D, Shi G M, et al. Image deblurring and super-resolution by adaptive sparse domain selection and adaptive regularization[J]. IEEE Transactions on Image Processing, 2011, 20(7): 1838-1857. [DOI: 10.1109/TIP.2011.2108306].
  • 8Nazzal M, Ozkaramanli H. Wavelet domain dictionary learning-based single image super-resolution[J]. Signal, Image and Video Processing, 2014: 1-11. [DOI: 10.1007/s11760-013-0602-7].
  • 9Xu J, Chang Z G, Fan J L. Image super-resolution by mid-frequency sparse representation and total variation regularization[J]. Journal of Electronic Imaging, 2015, 24(1): 013039-013039. [DOI: 10.1117/1.JEI.24.1.013039].
  • 10Zhou F, Liao Q M. Single-frame image super-resolution inspired by perceptual criteria[J]. IET Image Processing, 2014, 9(1): 1-11. [DOI: 10.1049/iet-ipr.2013.0808].

引证文献8

二级引证文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部