期刊文献+

基于稀疏表示的两级级联快速行人检测算法 被引量:1

Two Stage Cascade Fast Pedestrian Detection Algorithm Based on Sparse Representation
下载PDF
导出
摘要 针对复杂背景下的行人检测问题,提出一种两级级联的快速行人检测算法。第一级采用竖直方向的边缘对称特征和基于行人先验知识的弱分类器,排除大部分非行人区域。第二级采用梯度方向直方图特征和基于LC-KSVD字典学习的稀疏表示分类算法,对剩余区域进行精确检测。实验结果表明,该算法在保证检测精度的同时缩短了行人检测的时间,并且对遮挡情况有较好的鲁棒性。在INRIA数据库上每幅图像平均检测时间仅为69ms,对数平均漏检率为38%,较CENTRIST+C4算法和HOG+SVM算法的漏检率有所降低,并提升了检测速度。 According to the problem of fast pedestrian detection in complex background,this paper proposes a two stage cascade fast pedestrian detection algorithm. At the first stage,most of non-pedestrian areas can be excluded by using the vertical edge symmetrical feature and the weak classifier based on pedestrians prior knowledge. During the second stage, the remaining areas are further accurately detected with Histograms of Oriented Gradient( HOG) features and the sparse representation classification algorithm based on LC-KSVD dictionary learning. Experimental results show that the algorithm ensures the detection accuracy and shortens the pedestrian detection time. It also has good robustness to occlusion. In the INRIA database,the average time required for each image is only 69 ms,the logarithmic mean missing rate is 38%, compared with CENTRIST + C4 algorithm and HOG + SVM algorithm, the relative missing rates are decreased,and the relative detection speeds are increased.
出处 《计算机工程》 CAS CSCD 北大核心 2015年第6期221-226,共6页 Computer Engineering
基金 四川省教育厅科研基金资助项目(11ZB106) 四川省科技创新苗子工程基金资助项目(2015051)
关键词 行人检测 稀疏表示 竖直边缘特征 梯度方向直方图 两级级联 字典学习 pedestrian detection spare representation vertical edge feature Histograms of Oriented Gradient (HOG) two stage cascade dictionary learning
  • 相关文献

参考文献15

  • 1Dalal N,Triggs B.Histograms of Oriented Gradients for Human Detection[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2005:886-893.
  • 2Wang Xiaoyu,Han T X,Yan Shuicheng.An HOG-LBP Human Detector with Partial Occlusion Handling[C]//Proceedings of the12th IEEE Conference on Computer Vision.Washington D.C.,USA:IEEE Press,2009:32-39.
  • 3Maji S,Berg A,Malik J.Classification Using Intersection Kernel Support Vector Machines is Efficient[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2008:1-8.
  • 4Wu Jianxin,Geyer C,Rehg J M.Real-time Human Detection Using Contour Cues[C]//Proceedings of International Conference on Robotics and Automation.Washington D.C.,USA:IEEE Press,2011:860-867.
  • 5Wu Jianxin,Rehg J M.CENTRIST:A Visual Descriptor for Scene Categorization[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2011,33(8):1489-1501.
  • 6Benenson R,Mathias M,Timofte R,et al.Pedestrian Detection at100Frames per Second[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2012:2903-2910.
  • 7Ouyang Wanli,Wang Xiaogang.Single-pedestrian Detection Aided by Multi-pedestrian Detection[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2013:3198-3205.
  • 8Donoho D L.Compressed Sensing[J].IEEE Transactions on Information Theory,2006,52(4):1289-1306.
  • 9Candes E,Romberg J,Tao T.Robust Uncertainty Principles:Exact Signal Reconstruction from Highly Incomplete Frequency Information[J].IEEE Transactions on Information Theory,2006,52(2):489-509.
  • 10张涛,梁德群,王新年.基于稀疏表示的图像模糊度评价方法[J].计算机工程,2013,39(4):267-271. 被引量:3

二级参考文献30

  • 1ITU. Methodology for The Subjective Assessment of The Quality of Television Pictures[R]. Tech. Rep.: ITU-R BT 500-11, 2002.
  • 2Lin Weisi, Jay K C C. Perceptual Visual Quality Metrics: A Survey[J]. Journal of Visual Communication and Image Representation, 2011, 22(4): 297-312.
  • 3Batten C F. Auto-focusing and Astigmatism Correction in the Scanning Electron Microscope[D]. Cambridge, UK: University of Cambridge, 2000.
  • 4Sadaka N G, Karam L J, Ferzli R. No-reference Perceptual Image Sharpness Metric Based on Saliency-weighted Fovea Pooling[C]//Proc. of International Conference on Image Processing. San Francisco, USA: IEEE Press, 2008.
  • 5Hassen R, Wang Zhou, Salama M. No-reference Image Sharpness Assessment Based on Local Phase Coherence Measurement[C]//Proc. of International Conference on Acoustics, Speech and Signal Processing. Texas, USA: IEEE Press, 2010.
  • 6Crete F, Dolmiere T, Ladret P, et al. The Blur Effect: Perception and Estimation with a New No-reference Perceptual Blur Metric[C]//Proc. of SPIE Conference onHuman Vision and Electronic Imaging. [S. 1.]: SPIE Press, 2007.
  • 7Ferzli R, Karam L J. A No-reference Objective Image Sharpness Metric Based On The Notion of Just Noticeable Blur(JNB)[J]. IEEE Trans. on Image Processing, 2009, 18(4): 717-728.
  • 8Ferzli R, Karam L J. A No-reference Image Blur Metric Based on the Cumulative Probability of Blur Detection (CPBD)[J]. IEEE Trans. on Image Processing, 2011, 20(9): 2678-2683.
  • 9Olshausen B A, Field D J. Emergence of Simple-cell Receptive Field Properties by Learning a Sparse Code for Natural Images[J]. Nature, 1996, 381(6583): 607-609.
  • 10Donoho D L. Compressed Sensing[J]. IEEE Trans. on Information Theory, 2006, 52(4): 1289-1306.

共引文献5

同被引文献11

引证文献1

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部