期刊文献+

改进层次聚类法在复合材料敲击检测中的应用 被引量:1

Application of Improved Hierarchical Clustering Method on Coin- tap Test System of Composite Material
下载PDF
导出
摘要 伴随复合材料的迅速发展,其在航空航天方面的应用也日益普遍,但因复合材料的各向异性,在制造过程中会导致某些缺陷的产生。敲击检测作为一种实时原位的无损检测,在复合材料的检测中效果明显。由于敲击检测尚未找到合理的数据处理方法,所以其应用范围受到限制。从解决敲击检测数据处理方法的角度出发,提出将改进层次聚类法应用于敲击检测中,并在应用实例环节对该方法进行了应用,通过实验结果对比,表明改进层次聚类方法可以解决敲击检测数据处理的问题。 With the rapid development of composite materials,its application in aviation and aerospace are increasingly common,but because of the anisotropy of composite materials,will lead to some defects in the process of manufacturing. Coin- tap test as a kind of real- time in- situ nondestructive testing,the effect is obvious in the inspection of composite material. Because of the coin- tap test have yet to find reasonable data processing methods,so its application is limited. This paper from the perspective of solving coin- tap test data processing method,the improving hierarchical clustering method is put forward to apply to cointap test. This method has been applied in application link,by comparison with the experimental results,show that the improved hierarchical clustering method can solve the problem of coin- tap test data processing.
出处 《航空计算技术》 2015年第3期4-7,共4页 Aeronautical Computing Technique
基金 国家自然科学基金项目资助(50705097) 中国民航总局科技基金项目资助(MHRD07z38)
关键词 敲击检测 复合材料 层次聚类 航空航天 数据处理 coin- tap test composite material hierarchical clustering aerospace aviation data processing
  • 相关文献

参考文献3

二级参考文献19

  • 1马楠,官建成.利用引文分析方法识别研究前沿的进展与展望[J].中国科技论坛,2006(4):110-113. 被引量:26
  • 2袁方,周志勇,宋鑫.初始聚类中心优化的k-means算法[J].计算机工程,2007,33(3):65-66. 被引量:153
  • 3Yanovsky V I. Citation Analysis Significance of Scientific Journals[J]. Scientometries, 1981, 3(3): 223-233.
  • 4Garfield E. Citation Indexing - Its Theory and Application in Science, Technology and Humani- ties[M]. New York: Wiley. 1979.
  • 5Agnieszka Nowak, Alicja Wakulicz-Deja. Intelligent Information Processing and Web Mining[M]. Springer Berlin, 2005.
  • 6Agnieszka Nowak, Alicja Wakulicz-Deja. The Concept of the Hierarchical Clustering Algorithms for Rules Based Systems. Intelligent Information Processing and Web Mining[M]. Springer Berlin, 2005.
  • 7Sueli A. Mingoti, Joab O. Lima. Comparing SOM Neural Network with Puzzy c-means, K-means and Traditional Hierarchical Clustering Algorithms[J]. European Journal of Operational Research, 2006, 174: 1742-1759.
  • 8Hisashi Koga, Tetsuo Ishibashi, ToshinoriWatanabe. Fast Agglomerative Hierarchical Clustering Algorithm Using Locality-Sensitive Hashing[J]. Knowledge and Information Systems, 2007, 12(1): 25-53.
  • 9Pang-Ning Tan, Michael Steinbach, Vipin Kumar. Introduction to Data Mining[M]. Posts and Telecom Press, 2006.
  • 10Tian-yang Lv, Yu-hui Xing, Shao-bing Huang, etc. An Auto-stopped Hierarchical Clustering Algorithm for Analyzing 3D Model Database[J]. Knowledge Discovery in Databases, 2005 (3721): 601-608.

共引文献56

同被引文献4

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部