期刊文献+

行人检测中非极大值抑制算法的改进 被引量:21

Improvement of Non-maximum Suppression in Pedestrian Detection
下载PDF
导出
摘要 行人检测是计算机视觉领域的难点和热点问题。行人检测可大致划分为3个部分:特征提取、分类和非极大值抑制(Non-maximum Suppression,NMS)。当前的研究工作主要集中在特征提取、特征学习和分类器等方向,而非极大值抑制方向鲜有改进。目前常用的非极大值抑制算法是贪心策略,抑制时只使用了单一的重合面积信息。针对该问题,在ACF(Aggregate Channel Features)检测算法的基础上,对非极大值抑制进行了3项改进,显著地提升了算法的精度,并且算法的时间消耗只有略微的增加。在INRIA数据集上,单独使用引入尺度比的动态面积阈值NMS时能降低平均对数漏检率(MR)0.99%;单独使用保留外围检测分数相近的检测窗口的策略时NMS能降低MR 1.25%;两者结合可降低MR 2.5%;结合后,再对已经被抑制的检测窗口重复抑制,MR降低了2.63%,达到14.22%。 Pedestrian detection is a hot topic in computer vision and it includes three parts.- feature extraction, classification, and non-maximum suppression (NMS). Most of the existing results on pedestrian detection have focuses on feature extraction, feature learning, and classifier. To the contrary, there exist few results on NMS. Moreover, the common approach on NMS is based on greedy strategy, which only uses the information of overlapping area to suppress other windows. By means of ACF (Integral Channel Features), this paper proposes three improved NMS algorithms, which can notably raise the accuracy of computation without increasing computation time. On the data set of INRIA pedestrian, when only using the dynamic overlap threshold changing with the scale rate, the MR (log-average miss rate) can be reduce by 0.99%, which can be only reduced by 1.25% when using the strategy of saving outlying detection windows with the similar score. The integration of these two methods can reduce MR by 2.5 %. Furthermore, the suppression again of the suppressed detection windows can further reduce MR by 2.63% to achieve a lower MR with 14.22%.
出处 《华东理工大学学报(自然科学版)》 CAS CSCD 北大核心 2015年第3期371-378,共8页 Journal of East China University of Science and Technology
基金 国家自然科学基金(60974066)
关键词 行人检测 非极大值抑制 ACF算法 目标检测 pedestrian detection non-maximum suppression aggregated channel features object detection
  • 相关文献

参考文献18

  • 1Dollar P, Wojek C, Schiele B, et al. Pedestrian detection: An evaluation of the state of the art[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 34(4) : 743-761.
  • 2Benenson R, Omran M, Hosang J, et al, Ten years of pe- destrian detection, what have we learned?. [C]// European Conference on Computer Vision (ECCV) . Zurich, Switzer- land: CVRSUAD workshop, 2014:613-627.
  • 3Dalal N, Triggs B. Histograms of oriented gradients for human detection[C]// IEEE Computer Society Conference on Computer Vision and Pattern Recognition ( CVPR ). USA: IEEE, 2005; 886-893.
  • 4Lira J J, Zitnick C L, Dolldr P. Sketch tokens, A learned mid level representation for contour and object detection[C]// IEEE Conference on Computer Vision and Pattern Recogni- tion (CVPR). USA: IEEE, 2013: 3158-3165.
  • 5Dolldr P, Appel R, Belongie S, et al. Fast feature pyramids for obieet detection[J]. IEEE Transactions on Pattern Analy sis and Machine Intelligence, 2014,36(8) :1532-1545.
  • 6Wang Xiaoyu, Tony X, Yan Shuicheng. An HOG-LBP human detector with partial occlusion handling[C]// i2th International Conference on Computer Vision (ICCV). Kyoto, Japan: IEEE, 2009: 32-39.
  • 7Dollar P,Tu Zhuowen, Perona P, etal. Integral channel fea- tures[C]// British Machine Vision Conference ( BMVC ). London: DBLP, 2009:1-11.
  • 8Friedman J, Hastie T, Tibshirani R. Additive logistic regression: A statistical view of boosting[J]. The Annals of Statistics, 2000, 28(2): 337-407.
  • 9Marin J,Vdzquez D, Lfpez A M, et al. Random forests of local experts for pedestrian detection[C]//IEEE Internation al Conference on Computer Vision (ICCV). USA: IEEE, 2013 : 2592-2599.
  • 10Ouyang Wanli, Wang Xiaogang. Joint deep learning for pedestrian detection[C]//IEEE International Conference on- Computer Vision (1CCV). USA: IEEE, 2013:2056-2065.

二级参考文献14

  • 1FELZENSZWALB P F, GIRSHICK R B, MCALLESTER D, et al. Object detection with discriminatively trained part based models[J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2010, 32(9): 1627-1645.
  • 2FERRARI V, JURIE F, SCHMID C. From images to shape models for object detection[J]. International Journal of Computer Vision, 2010, 87(3): 284-303.
  • 3NOWOZIN S, LAMPERT C. Global connectivity potentials for random field models[C]//Proc of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Miami, USA: IEEE, 2009.
  • 4FERRARI V, FEVRIER L, JURIE F, et al. Groups of adjacent contour segments for object detection[J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2008, 30(1): 36-51.
  • 5DALAL N, TRIGGS B. Histogram of oriented gradients for human detection[C]//Proc of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Diego, USA: IEEE, 2005.
  • 6SHOTTON J, WINN J, ROTHER C, et al. Textonboost: Joint appearance, shape and context modeling for multi-class object recognition and segmentation[C]//Proc of the 10th European Conference on Computer Vision. Graz, Austria: [s.n.], 2006.
  • 7ALEXE B, DESELAERS T, FERRARI V. Measuring the objectness of image windows[J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2012, 34(1): 2189-2202.
  • 8TIAN Y M, LATECKI L J. From partial shape matching through local deformation to robust global shape similarity for object detection[C]//Proc of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Colorado Springs, USA: IEEE, 2011.
  • 9LAMPERT C H, BLASCHKO M B, HOFMANN T. Beyond sliding windows: Object localization by efficient subwindow search[C]//Proc of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Miami, USA: IEEE,2008.
  • 10ROWLEY H A. BALUJA S, KANADE T. Neural networks based face detection[J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 1990,20(1): 22-38.

共引文献2

同被引文献104

引证文献21

二级引证文献123

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部