期刊文献+

基于压缩感知的旋转式基阵DOA估计

下载PDF
导出
摘要 提出旋转基阵方法,达到增加虚拟阵元的效果,再利用压缩感知理论进行阵列信号方位估计(DOA)。此方法可降低阵列流形矩阵相关性,提高多信号恢复算法成功率,且具有高分辨率。信源个数大于阵元个数时,该方法仍能成功对各信源方向进行估计。
出处 《声学与电子工程》 2015年第2期17-21,共5页 Acoustics and Electronics Engineering
  • 相关文献

参考文献12

  • 1MARPLE S L. Digital spectral analysis with applications[M]. Englewood Cliffs: Prentice-Hall,1987: 35- 101.
  • 2CANDES E J, ROMBERG J, TAO T. Robust uncertainty principles:exact signal reconstruction from highly incomplete frequency information[J]. IEEE Trans on information Theory,2006,52(2):489-509.
  • 3DONOHO D L. Compressed sensing[J]. IEEE Trans on Information Theory, 2006,52(4):1289-1306.
  • 4DONOHO D L, TSAIG Y. Extensions of compressed sensing[J].Signal Processing,2006,86(3):533-548.
  • 5CANDES E. Compressive sampling[C]. Proc of the Int Congress of Mathematicians.Madrid,2006,3:1433-1452.
  • 6尹宏鹏,刘兆栋,柴毅,焦绪国.压缩感知综述[J].控制与决策,2013,28(10):1441-1445. 被引量:48
  • 7MALIOUTOV D, CETIN M. A sparse signal reconstruction perspective for source localization with sensor arrays[J]. IEEE Trans. Signal Process, 2005.
  • 8YUAN RUI, YUE JUN. DOA study of four array elements in square based on compression sensing[J]. Applied Mechanics Materials, 635-637:971-977.
  • 9孙磊,王华力,熊林林,蒋岩.基于贝叶斯压缩感知的子空间拟合DOA估计方法[J].信号处理,2012,28(6):827-833. 被引量:7
  • 10陈玉凤,黄建国,苏建军.基于稀疏重建和压缩感知波束形成的高分辨DOA估计[J].鱼雷技术,2013,21(2):110-114. 被引量:5

二级参考文献105

  • 1张春梅,尹忠科,肖明霞.基于冗余字典的信号超完备表示与稀疏分解[J].科学通报,2006,51(6):628-633. 被引量:70
  • 2方红,章权兵,韦穗.基于非常稀疏随机投影的图像重建方法[J].计算机工程与应用,2007,43(22):25-27. 被引量:27
  • 3Krim H, Viberg M. Two decades of array signal processing research: the parametric approach [ J]. IEEE Signal Processing Magazine, 1996, 13(4):67-94.
  • 4Candes E J, Romberg J, Tao T. Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information [ J ]. IEEE Transactions on Information Theory, 2006, 52 (2) :489 - 509.
  • 5Candes E J, Romberg J, Tao T. Stable signal recovery from incomplete and inaccurate measurements [ J ]. Communications on Pure and Applied Mathematics, 2006, 59(8 ) : 1207 -1223.
  • 6Candes E J. Compressive sampling[ C ]. International Congress of Mathematicians, Madrid, Spain, August 22- 30, 2006.
  • 7Donoho D L. Compressed sensing [ J ]. IEEE Transactions on Information Theory, 2006, 52 (4) : 1289 - 1306.
  • 8Candes E J, Wakin M B. An introduction to compressive sampling[ J]. IEEE Signal Processing Magazine, 2008, 25 (2) : 21 -30.
  • 9Romberg J. Imaging via compressive sampling[ J]. IEEE Signal Processing Magazine, 2008, 25 (2) : 14 - 20.
  • 10Paredes J L, Arcw G R, Wang Z M. Uhra-Wideband compressed sensing: channel estimation [ J ]. IEEE Journal of Selected Topics in Signal Processing, 2007, 1 (3) :383 -395.

共引文献88

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部