期刊文献+

静压卸载后夹层结构界面蠕变失效特性分析

Analysis of Creep Interface Failure Mechanism of Sandwich Structural with Viscoelastic Core After Unloading
下载PDF
导出
摘要 深水静压载荷作用下夹层复合材料结构上下表层弹性弯曲凹陷,其黏弹特性芯材将发生压缩形变,并随时间延长而产生蠕变形变,卸载后在表层弯曲刚度回复载荷作用下,表层与芯材界面将存在正应力σz。采用Maxwell模型建立芯层和界面层黏弹性材料本构模型,推导并得到了反映夹层结构界面层应变随时间变化规律的表达式;以最大正应变为界面层失效判据,综合分析了芯材与界面黏结材料的黏弹特征参数、表层弯曲刚度以及芯层厚度对界面层失效特性的影响规律。结果表明:芯层黏度系数ηc是影响模型蠕变的主要因素,表层弯曲刚度对模型蠕变的影响与达到最大正应变的时间有关,在材料选定后适当增加芯层厚度可减小界面层的应变。 Under deepwater static pressure, the surface of composite sandwich structure elastically bends to sink, and compression deformation of the viscoelastic core occurs to creep along the time. After unloa- ding, under elastically restoring force of the surface bending rigidity, normal stress σz exists between the surface and core interface. By use of Maxwell model, the constitutive model of the core layer and interface layer with viscoelastic materials was established, the variable patterns expression by time of strain with in- terface layer was deduced to receive. Take the biggest influence regulation of the core thickness, the surface normal strain as failure criterion of interface layer, bending rigidity and viscoelastic parameters of the core and interface adhesion material on interface failure mechanism were synthetically analyzed. The re- suits show that the core viscosity coefficient ηc is the main factors for the model creep and the influence of the surface bending rigidity for the model creep changes along the time reaching to the biggest normal strain, and increasing appropriately, the core thickness can decrease the interface strain after selecting the material.
作者 李卓 邱家波
出处 《四川兵工学报》 CAS 2015年第6期120-123,共4页 Journal of Sichuan Ordnance
基金 国家自然科学基金资助项目(51179200)
关键词 复合材料力学 夹层结构 损伤失效 蠕变 界面特性 composite mechanics sandwich structure creep interface properties
  • 相关文献

参考文献4

二级参考文献15

  • 1徐芝伦.弹性力学[M].北京:人民教育出版社,1982..
  • 2中科院力学所固体力学室板壳组.夹层板壳的弯曲、稳定和振动[M].北京:科学出版社,1977..
  • 3Swanson S R. Core compression in sandwich beams under contact loading[J].Composite Structures, 2004, 64: 389-398.
  • 4帕利0M,巴依佐夫ГB,沃罗涅诺夫E只.船舶结构力学手册[M].徐秉汉,徐绚,徐铭麟,译.北京:国防工业出版社,2002.
  • 5Steeves C A, Fleck N A. Material selection in sandwich beam construction[J]. Scripta Materialia, 2004, 50:1 335-1 339.
  • 6Mouritz A P, Gellert E, Pburchill P, et al. Review of advanced composite structures of naval ships and submarines[J]. Composite Structures, 2001, 53 (1) :21-41.
  • 7Icardi U. Higher-order zig-zag model for analysis of thick composite beams with inclusion of transverse normal stress and sublaminates approximations[J].Composites: Part B, 2001, 32: 343-354.
  • 8Yang W P, Chen L W, Wang C C. Vibration and dynamic stability of a traveling sandwich beam [J].Journal of Sound and Vibration, 2005,285 : 597-614.
  • 9Gdoutos E E, Daniel I M, Wang K A. Compression facing wrinkling of composite sandwich structures [J].Mechanics of Materials, 2003, 35: 511- 522.
  • 10Leotoing L, Drapier S, Vautrin A. Nonlinear interaction of geometrical and material properties in sandwich beam instabilities[J]. International Journal of Solids and Structures, 2002, 39:3 717-3 739.

共引文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部