期刊文献+

一类非齐次分数阶偏微分方程Cauchy问题 被引量:1

Cauchy problems for a class of nonhomogeneous fractional partial differential equations
下载PDF
导出
摘要 运用Laplace-Fourier变换及其逆变换,对一类Caputo型非齐次分数阶偏微分方程Cauchy问题经典解的存在性进行研究,并分析此经典解的渐近行为.最后,通过数值举例来说明该方法的有效性. This paper is concerned with the existence of classical solutions for a class of nonhomogeneous fractional partial differential equations via the Laplace- Fourier transforms and their inverse transforms. The asymptotic property of so- lutions are derived. Finally, the simulation example is provided to illustrate the main results.
出处 《应用数学与计算数学学报》 2015年第2期127-135,共9页 Communication on Applied Mathematics and Computation
基金 上海市自然科学基金资助项目(15ZR1400800) 中央高校基本科研业务费专项基金资助项目(CUSFDH-D-2014061)
关键词 非齐次 分数阶偏微分方程 存在性 渐近性 nonhomogeneous fractional partial differential equations existence asymptoticity
  • 相关文献

参考文献12

  • 1Kilbas A A, Srivastava H M, TrujilloJ J. Theory and Applications of Fractional Differential Equations[M]. North-Holland: Elsevier, 2006.
  • 2Samko S G, Kilbas A A, Marichev L I. Fractional Integrals and Derivatives and Some of Their Applications[M]. Amsterdam: Gorden and Breach Science Publishers, 1993.
  • 3郭柏灵,蒲学科,黄凤辉.分数阶偏微分方程及其数值解[M].北京:科学出版社,2011.
  • 4黄凤辉,郭柏灵.一类时间分数阶偏微分方程的解[J].应用数学和力学,2010,31(7):781-790. 被引量:13
  • 5Ge F, Kou C. Stability analysis by Krasnoselskii's fixed point theorem for nonlinear fractional differential equations[J]. Appl Math Comput, 2015, 257: 308-316.
  • 6Debnath L. Nonlinear Partial Differential Equations for Scientists and Engineers[M]. 3rd ed. Boston: Birkhauser, 2012.
  • 7Haberman R. Applied Partial Differential Equations with Fourier Series and Boundary Value Problems[M].[S.l.]: Pearson Electronic Book, 2013.
  • 8Bahouri H, CheminJ Y, Danchin R. Fourier Analysis and Nonlinear Partial Differential Equations[M]. Heidelberg: Springer-Verlag,2011.
  • 9Kilbas A A, Saigo M. H-Transforms: Theory and Applications[M]. Boca Raton: CRC Press, 2004.
  • 10Erdelyi A, Magnus W, Oberhettinger F, Tricomi F G. Higher Transcendental Functions[M]. New York: McGraw-Hill, 1953.

二级参考文献8

  • 1Podlubny I. Fractional Differential Equations[ M]. San Diego: Academic Press, 1999.
  • 2Gorenflo R, Luchko Y, Mainardi F. Wright function as scale-invariant solutions of the diffusion-wave equation[J]. J Comp Appl Math, 2000, 118(1/2) : 175-191.
  • 3Mainardi F, Paradisi P, Gorenflo R. Probability distributions generated by fractional diffusion equations[C]//Kertesz J, Kondor I. Econophysics: an Emerging Science. Dordrecht: Kluwer Academic Publishers, 1998.
  • 4Mainardi F, Luchko Y, Pagnini G. The fundamental solution of the space-time fractional diffusion equation[ J ]. Fractional Calculus and Applied Analysis, 2001, 4(2) : 153-192.
  • 5Wyss W. The fractional diffusion equation[ J]. J Math Phys, 1986, 27( 11 ) :2782-2785.
  • 6Chen J, Liu F, Anh V. Analytical solution for the time-fractional telegraph equation by the method of separating variables [J]. J Math Anal Appl, 2008, 338 (2) : 1354-1377.
  • 7Agrawal O P. Solution for a fractional diffusion-wave equation defined in a bounded domain [ J ]. Nonlinear Dynamics, 2002, 29 ( 1/4 ) : 145-155.
  • 8Gorenflo R, Mainardi F. Fractional calculus: integral and differential equations of fractional order[ C]//Carpinteri A, Mainardi F. Fractals and Fractional Calculus in Continuum Mechanics. New York: Springer, 1997 : 223-275.

共引文献34

同被引文献13

引证文献1

  • 1段俊生,寇春海,李常品.前言[J].应用数学与计算数学学报,2015,29(2).

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部