期刊文献+

基于参数自适应控制的分数阶离散logistic映射同步 被引量:2

Synchronization of fractional discrete logistic map based on parametric adaptive control
下载PDF
导出
摘要 讨论了分数阶离散混沌系统驱动系统和相应系统都是相同混沌映射、但是参数不同时的同步问题,采用了参数自适应算法实现了分数阶离散logistic映射的同步,并且给出了同步的充分条件. In this paper, the master-slave synchronization for the fractional differ- ence equation is studied with the same chaotic maps but have different parameters. We proposed a parametric adaptive control algorithm, and the numerical simula- tion shows that the designed synchronization method can effectively synchronize the fractional logistic map. Furthermore, we obtain a sufficient condition for the synchronization.
出处 《应用数学与计算数学学报》 2015年第2期232-239,共8页 Communication on Applied Mathematics and Computation
基金 浙江省自然科学基金资助项目(LQ12A01010) 上海市教委资助项目(ZZth13025) 上海师范大学天华学院校内资助项目(Z1306d)
关键词 分数阶离散混沌系统 参数自适应 同步 discrete fractional logistic map parametric adaptive control syn- chronization
  • 相关文献

参考文献14

  • 1Miller K S, Ross B. An Introduction to the Fractional Calculus and Fractional Differential Equations[M]. New York:John Wiley and Sons, Inc, 1993.
  • 2Podlubny I. Fractional Differential Equations[M]. New York: Academic Press, 1990.
  • 3Li C P, Peng PJ. Chaos in Chen's system with a fractional order[J]. Chaos, Solitons and Fractals, 2004, 22: 443-450.
  • 4Li C P, Chen A, YeJ J. Numerical approaches to fractional calculus and fractional ordinary differential equation[J].Journal of Computational Physics, 2011, 230 (9): 3352-3368.
  • 5Li C P, Ma Y T. Fractional dynamical system and its linearization theorem [J]. Nonlinear Dynamics, 2013,71 (4): 621-633.
  • 6Li C P, Zhang F R, KurthsJ, Zeng F H. Equivalent system for a multiple-rational-order fractional differential system[J]. Phil Trans R Soc, 1990, 371: 20120156 (30 pages).
  • 7DuanJ S, Randolph Rach, Lin S M. Analytic approximation of the blow-up time for nonlinear differential equations by the ADM-Pade technique[J]. Mathematical Methods in the Applied Sciences, 2013, 36: 1790-1804.
  • 8DuanJ S, Wang Z, Liu Y L, Qiu X. Eigenvalue problems for fractional ordinary differential equations[J]. Chaos, Solitons and Fractals, 2013, 46: 46-53.
  • 9Abdeljawad T. On Riemann and Caputo fractional differences[J]. Comput Math Appl, 2011, 62: 1602-1611.
  • 10Atici F M, Eloe P W. A transform method in discrete fractional calculus[J]. IntJ Diff Equ, 2007, 2: 165-176.

同被引文献19

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部