期刊文献+

预变形对非线性结构响应特征的影响 被引量:5

EFFECTS OF THE INITIAL DEFORMATION ON THE DYNAMIC RESPONSE OF LOCAL NONLINEAR SYSTEMS
下载PDF
导出
摘要 含有大变形非线性约束的结构中,往往存在不同程度的预变形,导致系统静平衡点的改变.预变形的存在使得系统的动力学控制方程同时含有平方和立方非线性.实验结果表明,较小的激励力就能激发出含预变形非线性结构的软弹簧频响特征.以实验中的参数作仿真分析,结果表明,随着预变形的逐渐增大,非线性结构频响特征呈现从硬弹簧特性向软弹簧特性的转变,并求出了转变过程的临界变形.而随着外载荷幅值的增大,则是从软弹簧特性向硬弹簧特性转变.在不同预变形和激励力幅值下,还出现了超谐波共振和次谐波共振的现象. There often exists initial deformation of various extents in a large-deformed structure with nonlinear components, which means the change of the system' s static equilibrium point. Moreover, under the initial de- formation, in the dynamic differential equations will appear the cubic stiffness non-linearity term and the asym- metric squared term. The experimental results show that a "softening" effect can be observed under the excitation of a quite small force. A numerical simulation was executed with the physical parameters in the experiment, which shows that the nonlinear frequency response changes from "hardening" to "softening" along with the incre- ment of the initial deformation, and the critical deformation was computed; while "softening" to "hardening" with the increment of the amplitude of the exciting force. Under various initial deformations and amplitudes of the exciting force, superharmonic resonances and subharmonic resonances were observed.
出处 《动力学与控制学报》 2015年第3期188-193,共6页 Journal of Dynamics and Control
基金 国家自然科学基金资助项目(11172067)~~
关键词 非线性频响 预变形 平方非线性 临界变形 nonlinear frequency response, initial deformation, squared nonlinear, critical deformation
  • 相关文献

参考文献11

  • 1Kim Y B, Noah S T, Choi Y S. Periodic response of multi- disk rotors with bearing clearances. Journal of Sound and Vibration, 1991, 144(3): 381 -395.
  • 2Kahraman A, Singh R. Non-linear dynamics of a geared ro- tor-bearing system with multiple clearances. Journal of Sound and Vibration, 1991, 144(3):469-506.
  • 3Bindemann A C, Ferri A A. Large amplitude vibration of a beam restrained by a non-linear sleeve joint. Journal of Sound and Vibration, 1995, 184(1): 19 -34.
  • 4Padmanabhan C, Singh R. Spectral coupling issues in a two-degree-of-freedom system with clearance nonlinearities. Journal of Sound and Vibration. 1992,155(2) : 209 -230.
  • 5姚红良,韩清凯,冯霏,闻邦椿.多自由度局部非线性系统频域响应及非线性位置的辨识方法[J].动力学与控制学报,2011,9(2):107-110. 被引量:4
  • 6Royston T J, Singh R. Experimental study of a mechanical system containing a local continuous stiffness non-linearity under periodic excitation and a static load. Journal of Sound and Vibration, 1996, 198(3) : 279 -298.
  • 7Ozer M B, Ozguven H N, Royston T J. Identification of structural non-linearities using describing functions and the Sherman-Morrison method. Mechanical Systems and Signal Processing, 2009,23( 1 ) : 30 -44.
  • 8Ferreira J V. Dynamic response analysis of structures with nonlinear components [ PhD Thesis ]. London: Imperial College, 1998.
  • 9Siller H R.E. Non-linear modal analysis methods for engi- neering structures [ PhD Thesis ]. London : Imperial Col- lege/University of London, 2004.
  • 10Arslan O, Aykan M, Ozguven H N. Parametric identifica- tion of structural nonlinearities from measured frequency re- sponse data. Mechanical Systems and Signal Processing, 2011, 25(4) :1112 - 1125.

二级参考文献11

  • 1姚红良,李鹤,李小彭,闻邦椿.旋转机械局部故障力的模型诊断及瞬时故障力识别[J].机械工程学报,2007,43(1):120-124. 被引量:12
  • 2D Pun, S L Lau, S S Law, D Q Cao. Forced vibration analy- sis of a muhidegree impact vibrator. Journal of Sound and Vibration, 1998,213 ( 3 ) : 447 - 466.
  • 3T C Kim, T E Rook, R Singh. Super- and sub-harmonic response calculations for a torsional system with clearance nonlinearity using the harmonic balance method. Journal of Sound and Vibration, 2005,281: 965-993.
  • 4Z Q LANG, S A BILLINGS. Energy transfer properties of non-linear systems in the frequency domain. International Journal of Control, 2005,78 ( 5 ) : 345-362.
  • 5Z Q Lang, S A Billings. Output frequency characteristics ofnonlinear system. International Journal of Control, 1996, 64 : 104-1067.
  • 6Z K Peng, Z Q Lang, S A Billings, G R Tomlinson. Com- parisons between harmonic balance and nonlinear output frequency response function in nonlinear system analysis. Journal of Sound and Vibration, 2008,311 : 56 -73.
  • 7Z K Peng, Z Q Lang. Detecting the position of non-linear component in periodic structures from the systemresponses to dual sinusoidal excitations. International Journal of Non- Linear Mechanics, 2007, 42:1074 - 1083.
  • 8H Jeffreys, B S Jeffreys. Methods of mathematical physics. Cambridge, England: Cambridge University Press, 1988.
  • 9K Worden, G R Tomlinson. Nonlinearity in structural dynamics. Institute of Physics Publishing, 2001.
  • 10N Bachschmid, P Pennacchi, A Vania. Identification of multiple faults in rotor systems. Journal of Sound and Vi- bration, 2002,254 ( 2 ) , 327 - 366.

共引文献3

同被引文献38

引证文献5

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部