期刊文献+

基于改进粒子群优化算法的景观步道设计

The Design of Landscape Trails Based on Improved Particle Swarm Optimization
下载PDF
导出
摘要 针对无景观步道的绿化带无法满足行走问题,提出了一种改进的粒子群算法,并在此基础上建立了优化景观步道设计模型。通过引入非线性的动态惯性权重系数,平衡了粒子群算法的全局搜索能力和局部改良能力。仿真结果表明,该算法比常规的无约束优化算法在全局收敛速度、收敛精度及寻优能力等方面有明显的优势。 In view of the problem that green belt without landscape trail or with unreasonable design fails to meet the pedestrian convenient trip, this paper proposed an improved particle swarm optimization algorithm, on which the optimal design model of the landscape footpath was established. By introducing a nonlinear dynamic inertia weight coefficient, the particle swarm algorithm was able to keep its balance of abilities between the global search and local improvement. The simulation results showed that in comparison with the conventional unconstrained optimization algorithm in landscape trail design application, the proposed algorithm had some obvious advantages over it in such aspects as global convergence speed, convergence precision and optimization ability.
出处 《新乡学院学报》 2015年第6期9-11,共3页 Journal of Xinxiang University
基金 新乡学院大学生科技创新奖励基金项目(ZR201401) 新乡学院教学改革重点项目(XJGLXZ2013-06)
关键词 景观步道设计 粒子群优化算法 自适应优化 收敛寻优 design of landscape trail particle swarm optimization algorithm adaptive optimal control convergence and searching optimal
  • 相关文献

参考文献7

  • 1KENNEDY J, EBERHART R C. Particle Swarm Opti- mization: Proceedings of IEEE International Conference on Neural Networks, Perth, November 27-Decmber 1, t995[C1. Piscataway: IEEE Press, 1995.
  • 2SHI Y, EBERHART R C. Empirical Study of Particle Swarm Optimization: Proceeding of Congress on Computa- tional Intelligence, Washington DC, July 6-9, 1999 [C]. Piscataway: IEEE Press, 1999.
  • 3HATANAKA T, UOSAKI K, KOGA M. Evolutionary Computation Approach to Block Oriented Nonlinear Model Identification: 2004 5th Asian Control Conference, Melbourne, July 20-23, 2004 [C ]. Piscataway: IEEE Press, 2004.
  • 4龚纯,王正林.精通MATLAB最优化计算[M].北京:电子工业出版社,2012.
  • 5刘俊芳,高岳林.带自适应变异的量子粒子群优化算法[J].计算机工程与应用,2011,47(3):41-43. 被引量:24
  • 6穆瑞辉.基于粒子群优化的目标分类算法[J].新乡学院学报,2013,30(4):277-279. 被引量:1
  • 7唐培培,戴晓霞,谢龙汉.MATLAB科学计算及分析[M].北京:电子工业出版社,2012.

二级参考文献12

  • 1Kennedy J, Eberhart R C.Particle swarm optimization[J].Institute of Electrical and Electronics Engineers, 1995( 11 ) : 1942-1948.
  • 2Elegbede C.Structural reliability assessment based on particles swarm optimization[J].Structural Safety, 2005,27(10) : 171-186.
  • 3Pobinson J, Rahmat-Samii Y.Particle swarm optimization in elec- tromagnetics[J].IEEE Transactions on Antennas and Propagation, 2004,52 (2) : 397-406.
  • 4Salman A, Ahmad I.Al-Madani S.Particle swarm optimization for task assignment problem[J].Microprocessors and Microsystems, 2002,26(8) :363-371.
  • 5Duan Yuhong, Gao Yuelin, Li Jimin.A new adaptive particle swarm optimization algorithm withdynamically changing inertia weight[J].Intelligent Information Management Systems and Technologies, 2006,2 (2) :245-255.
  • 6Gao Yuelin,Duan Yuhong.An adaptive particle swarm optimization algorithm with new random inertia weight[J].Communications in Computer and Information Science, 2007 (3) : 342-350.
  • 7Sun J, Feng B, Xu W B.Particle swarm optimization with particles having quantum behavior[C].Proceedings of 2004 Congress on Evolutionary Computation.Piscataway,NJ:IEEE Press,2004:325-331.
  • 8MACQUEEN J B.Some Methods for Classification and Analysis of Multivariate Observations[C]//Proc of the 5th Berkeley Symposium on Mathematical Statistics and Probability,New York:ACM Press,1967:281-297.
  • 9WANG W,YANG J,Muntz R.STING:A Statistical Information Grid Approach to Spatial Data Mining[C]//Proc of the 23rd International Conference on Very Large Data BasesM,Erlin:Springer,1997:1-18.
  • 10王旸,刘晓东,徐小慧,胡军.基于粒子群优化的数据分类算法[J].系统仿真学报,2008,20(22):6158-6162. 被引量:8

共引文献59

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部