期刊文献+

扩散函数非参数估计的一种新方法 被引量:1

A New Nonparametric Estimation for Diffusion Function
原文传递
导出
摘要 考虑了一类基于样本插值的时齐扩散方程扩散函数的非参数估计程序.在一定的正则条件下,给出的扩散函数估计量是依概率收敛的,并且渐近地符合一个正态分布.通过分析,发现与传统的基于已实现波动率的估计量相比,估计量在精度上有所提高. In this paper, we consider a nonparametric estimation procedure for diffusion function of homogeneous stochastic differential equations based on sample interpolation. Un- der some certain regularity conditions, the proposed diffusion function estimator is consistent in probability and asymptotically follows a normal distribution. By our theoretical results, the precision of our estimator is better than that of the conventional estimator based on realized volatility.
出处 《数学的实践与认识》 北大核心 2015年第12期183-191,共9页 Mathematics in Practice and Theory
基金 国家自然科学基金(11271189 11201229)
关键词 样本插值 扩散函数 非参数估计 精度 sample interpolation diffusion function nonparametric estimation precision
  • 相关文献

参考文献20

  • 1Rosenblatt M. Remarks on Some Nonparametric Estimates of a Density Function[J]. The Annals of Mathematical Statistics, 1956, 27: 832-837.
  • 2Kaplan E L, Meier P. Nonparametric estimation from incomplete observations. Journal of the American Statistical Association, 1958, 53: 457-481.
  • 3Roussas G G. Nonparametric estimation in Markov processes[J]. Annals of the Institute of Statistical Mathematics, 1969, 21: 73-87.
  • 4Konakov V D. Asymptotic properties of some functions of nonparametric estimates of a density function[J]. Journal of Multivariate Analysis, 1973, 3: 454-468.
  • 5Georgiev A A, Greblicki W. Nonparametric function recovering from noisy observations[J]. Journal of Statistical Planning and Inference, 1986, 13: 1-14.
  • 6Lu Z Q. Local polynomial prediction and volatility estimation in financial time series[J]. Modelling and Forecasting Financial Data: Studies in Computational Finance, 2002, 2: 115-135.
  • 7Hardle W, Tsybakov A. Local polynomial estimators of the volatility function in non-parametric autoregression[J]. Journal of Econometrics, 1997, 81: 223-242.
  • 8Schmisser E. Non-parametric estimation of the diffusion coefficient from noisy data[J]. Statistical Inference for Stochastic Process, 2012, 15: 193-223.
  • 9Hoffmann M. Adaptive estimation in diffusion process[J]. Stochastic Process and Their Applications, 1999(a), 79: 135-163.
  • 10Hoffmann M. Lp estimation of the diffusion coefficient[J]. Bernoulli, 1999(b) 5: 447-481.

同被引文献6

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部